In my spark application which is run in a cluster mode, I get below exception. I know somehow this coud be due to emery issue. But as the error says, it can not connect to a node. But I ma sure the node is available and it can be connected. Can anyone know what is the main cause of this error and how to resolve it?
17/10/31 17:10:54 ERROR ShuffleBlockFetcherIterator: Failed to get block(s) from AUPER01-02-10-12-0.prod.vroc.com.au:36787
java.io.IOException: Failed to connect to AUPER01-02-10-12-0.prod.vroc.com.au/192.168.11.22:36787
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:232)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:182)
at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:97)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:141)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.access$200(RetryingBlockFetcher.java:43)
at org.apache.spark.network.shuffle.RetryingBlockFetcher$1.run(RetryingBlockFetcher.java:171)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:745)
Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: AUPER01-02-10-12-0.prod.vroc.com.au/192.168.11.22:36787
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:257)
at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:291)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:631)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131)
... 2 more
It appears that one of the executors died while the other executors tried to pull blocks from earlier shuffle stages to complete a Spark job.
Right after you've spark-submited a Spark application to a cluster, the application gets a set of machines for executors. They are responsible for executing tasks and caching their results (in memory and/or disk).
Every executor has its own BlockManager that is responsible for managing datasets (as blocks).
The BlockManagers in a Spark application have all to be available or the Spark application will re-trigger task execution.
ShuffleBlockFetcherIterator is a Scala Iterator that fetches multiple shuffle blocks (aka shuffle map outputs) from local and remote BlockManagers.
Related
I have been trying Spark 2.4 deployment on k8s and want to establish a secured RPC communication channel between driver and executors. Was using the following configuration parameters as part of spark-submit
spark.authenticate true
spark.authenticate.secret good
spark.network.crypto.enabled true
spark.network.crypto.keyFactoryAlgorithm PBKDF2WithHmacSHA1
spark.network.crypto.saslFallback false
The driver and executors were not able to communicate on a secured channel and were throwing the following errors.
Exception in thread "main" java.lang.reflect.UndeclaredThrowableException
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1713)
at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:64)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.run(CoarseGrainedExecutorBackend.scala:188)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.main(CoarseGrainedExecutorBackend.scala:281)
at org.apache.spark.executor.CoarseGrainedExecutorBackend.main(CoarseGrainedExecutorBackend.scala)
Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:101)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$run$1.apply$mcV$sp(CoarseGrainedExecutorBackend.scala:201)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:65)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:64)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
... 4 more
Caused by: java.lang.RuntimeException: java.lang.IllegalArgumentException: Unknown challenge message.
at org.apache.spark.network.crypto.AuthRpcHandler.receive(AuthRpcHandler.java:109)
at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:181)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:103)
at org.apache.spark.network.server.TransportChannelHandler.channelRead(TransportChannelHandler.java:118)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
Can someone guide me on this?
Disclaimer: I do not have a very deep understanding of spark implementation, so, be careful when using the workaround described below.
AFAIK, spark does not have support for auth/encryption for k8s in 2.4.0 version.
There is a ticket, which is already fixed and likely will be released in a next spark version: https://issues.apache.org/jira/browse/SPARK-26239
The problem is that spark executors try to open connection to a driver, and a configuration will be sent only using this connection. Although, an executor creates the connection with default config AND system properties started with "spark.".
For reference, here is the place where executor opens the connection: https://github.com/apache/spark/blob/5fa4384/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L201
Theoretically, if you would set spark.executor.extraJavaOptions=-Dspark.authenticate=true -Dspark.network.crypto.enabled=true ..., it should help, although driver checks that there are no spark parameters set in extraJavaOptions.
Although, there is a workaround (a little bit hacky): you can set spark.executorEnv.JAVA_TOOL_OPTIONS=-Dspark.authenticate=true -Dspark.network.crypto.enabled=true .... Spark does not check this parameter, but JVM uses this env variable to add this parameter to properties.
Also, instead of using JAVA_TOOL_OPTIONS to pass secret, I would recommend to use spark.executorEnv._SPARK_AUTH_SECRET=<secret>.
I have a cluster with CDH 5.8.4. I'm runnin a spark streaming application which reads and writes data from/to HBase by using the cloudera spark-hbase connector namely the HBaseContext.
When I start the application I give the principal and the kinit to the spark-submit script.
I'm seeing that after 7 days the application crashed with an error about the expiration of the ticket kerberos related to the HBase context. This is the error from the executors log:
ERROR executor.Executor: Exception in task 0.0 in stage 544265.0 (TID 1149098)
org.apache.hadoop.hbase.client.RetriesExhaustedException: Can't get the location
at org.apache.hadoop.hbase.client.RpcRetryingCallerWithReadReplicas.getRegionLocations(RpcRetryingCallerWithReadReplicas.java
:326)
at org.apache.hadoop.hbase.client.ScannerCallableWithReplicas.call(ScannerCallableWithReplicas.java:157)
at org.apache.hadoop.hbase.client.ScannerCallableWithReplicas.call(ScannerCallableWithReplicas.java:61)
at org.apache.hadoop.hbase.client.RpcRetryingCaller.callWithoutRetries(RpcRetryingCaller.java:200)
at org.apache.hadoop.hbase.client.ClientScanner.call(ClientScanner.java:320)
at org.apache.hadoop.hbase.client.ClientScanner.nextScanner(ClientScanner.java:295)
at org.apache.hadoop.hbase.client.ClientScanner.initializeScannerInConstruction(ClientScanner.java:160)
at org.apache.hadoop.hbase.client.ClientScanner.<init>(ClientScanner.java:155)
at org.apache.hadoop.hbase.client.HTable.getScanner(HTable.java:867)
at org.apache.hadoop.hbase.mapreduce.TableRecordReaderImpl.restart(TableRecordReaderImpl.java:91)
at org.apache.hadoop.hbase.mapreduce.TableRecordReaderImpl.initialize(TableRecordReaderImpl.java:169)
at org.apache.hadoop.hbase.mapreduce.TableRecordReader.initialize(TableRecordReader.java:134)
at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase$1.initialize(TableInputFormatBase.java:211)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:164)
at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:129)
at org.apache.hadoop.hbase.spark.NewHBaseRDD.compute(NewHBaseRDD.scala:34)
at org.apache.hadoop.hbase.spark.NewHBaseRDD.compute(NewHBaseRDD.scala:25)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.hadoop.security.token.SecretManager$InvalidToken: Token has expired
at sun.reflect.GeneratedConstructorAccessor58.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106)
at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:95)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRemoteException(ProtobufUtil.java:327)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRowOrBefore(ProtobufUtil.java:1593)
at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.locateRegionInMeta(ConnectionManager.java:1398)
at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.locateRegion(ConnectionManager.java:1199)
at org.apache.hadoop.hbase.client.RpcRetryingCallerWithReadReplicas.getRegionLocations(RpcRetryingCallerWithReadReplicas.java:315)
... 30 more
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.token.SecretManager$InvalidToken): Token has expired
at org.apache.hadoop.hbase.security.HBaseSaslRpcClient.readStatus(HBaseSaslRpcClient.java:155)
at org.apache.hadoop.hbase.security.HBaseSaslRpcClient.saslConnect(HBaseSaslRpcClient.java:222)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.setupSaslConnection(RpcClientImpl.java:617)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.access$700(RpcClientImpl.java:162)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection$2.run(RpcClientImpl.java:743)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection$2.run(RpcClientImpl.java:740)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1783)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.setupIOstreams(RpcClientImpl.java:740)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.writeRequest(RpcClientImpl.java:906)
at org.apache.hadoop.hbase.ipc.RpcClientImpl$Connection.tracedWriteRequest(RpcClientImpl.java:873)
at org.apache.hadoop.hbase.ipc.RpcClientImpl.call(RpcClientImpl.java:1242)
at org.apache.hadoop.hbase.ipc.AbstractRpcClient.callBlockingMethod(AbstractRpcClient.java:227)
at org.apache.hadoop.hbase.ipc.AbstractRpcClient$BlockingRpcChannelImplementation.callBlockingMethod(AbstractRpcClient.java:336)
at org.apache.hadoop.hbase.protobuf.generated.ClientProtos$ClientService$BlockingStub.get(ClientProtos.java:34070)
at org.apache.hadoop.hbase.protobuf.ProtobufUtil.getRowOrBefore(ProtobufUtil.java:1589)
Does anyone knows how to solve this issue?
Thanks in advance,
Beniamino
We (Splice Machine) had the same issue with a customer. Our issue was caused by https://issues.apache.org/jira/browse/SPARK-12646. We wrote some code to fix the _HOST issue and we also upgraded to Spark 2.2 to get around this issue.
You should not rely on an external ticket cache for distributed jobs. The best solution is to ship a keytab with your application or rely on a keytab being deployed on all nodes where your Spark task may be executed.
UserGroupInformation.loginUserFromKeytab("name#xyz.com", keyTab);
connection=ConnectionFactory.createConnection(conf);
With your approach above, you would need to do something like the following after obtaining the UserGroupInformation instance:
ugi.doAs(new PrivilegedAction<Void>() {
public Void run() {
connection = ConnectionFactory.createConnection(conf);
...
return null;
}
});
I am running a spark streaming application on a cluster composed by three nodes, each one with a worker and three executors (so a total of 9 executors). I am using the spark standalone mode (version 2.1.1).
The application is run with a spark-submit command with option --deploy-mode client and --conf spark.streaming.stopGracefullyOnShutdown=true.
The submit command is run from one of the nodes, let's call it node 1.
As a fault tolerance test I am stopping the worker on node 2 by calling the script stop-slave.sh.
In executor logs on node 2 I can see several errors related to a FileNotFoundException during a shuffle operation:
ERROR Executor: Exception in task 5.0 in stage 5531241.0 (TID 62488319)
java.io.FileNotFoundException: /opt/spark/spark-31c5b4b0-56e1-45d2-88dc-772b8712833f/executor-0bad0669-57fe-43f9-a77e-1b69cd284523/blockmgr-2aa295ac-78ca-4df6-ab89-51d422e8860e/1c/shuffle_2074211_5_0.index.ecb8e397-c3a3-4c1a-96ba-e153ed92b05c (No such file or directory)
at java.io.FileOutputStream.open(Native Method)
at java.io.FileOutputStream.<init>(FileOutputStream.java:206)
at java.io.FileOutputStream.<init>(FileOutputStream.java:156)
at org.apache.spark.shuffle.IndexShuffleBlockResolver.writeIndexFileAndCommit(IndexShuffleBlockResolver.scala:144)
at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
I can see 4 errors of this kind on the same task in each of the 3 executors on node 2.
In driver logs I can see:
ERROR TaskSetManager: Task 5 in stage 5531241.0 failed 4 times; aborting job
...
ERROR JobScheduler: Error running job streaming job 1503995015000 ms.1
org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 5531241.0 failed 4 times, most recent failure: Lost task 5.3 in stage 5531241.0 (TID 62488335, 10.7.94.68, executor 2): java.io.FileNotFoundException: /opt/spark/spark-31c5b4b0-56e1-45d2-88dc-772b8712833f/executor-0bad0669-57fe-43f9-a77e-1b69cd284523/blockmgr-2aa295ac-78ca-4df6-ab89-51d422e8860e/1c/shuffle_2074211_5_0.index.9e6148da-6ce2-4de5-94ab-d95db2c8f9f7 (No such file or directory)
This is taking down the application, as expected: the executor reached the spark.task.maxFailures on a single task and the application is then stopped.
I ran different tests and all of them but one ended with the app stopped. My idea is that the behaviour can vary depending on the precise step in the stream process I ask the worker to stop. In any case, all other tests failed with the same error described above.
Increasing the parameter spark.task.maxFailures to 8 did not help either, with the TaskSetManager signalling task failed 8 times instead of 4.
What if the worker is killed?
I also ran a different test: I killed the worker and 3 executors processes on node 2 with the command kill -9. And in this case, the streaming app adapted to the remaining resources and kept working.
In driver log we can see the driver noticing the missing executors:
ERROR TaskSchedulerImpl: Lost executor 0 on 10.7.94.68: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
Then, we notice the a long long serie of the following errors:
17/08/29 14:43:19 ERROR ReceiverTracker: Deregistered receiver for stream 5: Error starting receiver 5 - org.jboss.netty.channel.ChannelException: Failed to bind to: /X.X.X.X:40001
at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:106)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:119)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:74)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:68)
at org.apache.spark.streaming.flume.FlumeReceiver.initServer(FlumeInputDStream.scala:162)
at org.apache.spark.streaming.flume.FlumeReceiver.onStart(FlumeInputDStream.scala:169)
at org.apache.spark.streaming.receiver.ReceiverSupervisor.startReceiver(ReceiverSupervisor.scala:149)
at org.apache.spark.streaming.receiver.ReceiverSupervisor.start(ReceiverSupervisor.scala:131)
at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:607)
at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:597)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:2028)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:2028)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.BindException: Cannot assign requested address
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:414)
at sun.nio.ch.Net.bind(Net.java:406)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:214)
at sun.nio.ch.ServerSocketAdaptor.bind(ServerSocketAdaptor.java:74)
at org.jboss.netty.channel.socket.nio.NioServerBoss$RegisterTask.run(NioServerBoss.java:193)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.processTaskQueue(AbstractNioSelector.java:372)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:296)
at org.jboss.netty.channel.socket.nio.NioServerBoss.run(NioServerBoss.java:42)
... 3 more
This errors appears in the log until the killed worker is started again.
Conclusion
Stopping a worker with the dedicated command has a unexpected behaviour: the app should be able to cope with the missed worked, adapting to the remaining resources and keep working (as it does in the case of kill).
What are your observations on this issue?
Thank you,
Davide
I've got a lot of warning when using Dataproc 1.1 (Spark 2.0.2) with Kafka checkpointing on Google Cloud Storage. I've got the following warn :
16/12/11 01:36:02 WARN HttpTransport: exception thrown while executing request
java.net.SocketTimeoutException: Read timed out
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
at java.net.SocketInputStream.read(SocketInputStream.java:170)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at sun.security.ssl.InputRecord.readFully(InputRecord.java:465)
at sun.security.ssl.InputRecord.read(InputRecord.java:503)
at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:973)
at sun.security.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:930)
at sun.security.ssl.AppInputStream.read(AppInputStream.java:105)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
at java.io.BufferedInputStream.read(BufferedInputStream.java:345)
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:704)
at sun.net.www.http.HttpClient.parseHTTP(HttpClient.java:647)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream0(HttpURLConnection.java:1569)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1474)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:480)
at sun.net.www.protocol.https.HttpsURLConnectionImpl.getResponseCode(HttpsURLConnectionImpl.java:338)
at com.google.api.client.http.javanet.NetHttpResponse.<init>(NetHttpResponse.java:37)
at com.google.api.client.http.javanet.NetHttpRequest.execute(NetHttpRequest.java:94)
at com.google.api.client.http.HttpRequest.execute(HttpRequest.java:972)
at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:419)
at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:352)
at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.execute(AbstractGoogleClientRequest.java:469)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageImpl.listStorageObjectsAndPrefixes(GoogleCloudStorageImpl.java:1069)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageImpl.listObjectNames(GoogleCloudStorageImpl.java:1173)
at com.google.cloud.hadoop.gcsio.ForwardingGoogleCloudStorage.listObjectNames(ForwardingGoogleCloudStorage.java:182)
at com.google.cloud.hadoop.gcsio.CacheSupplementedGoogleCloudStorage.listObjectNames(CacheSupplementedGoogleCloudStorage.java:381)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageFileSystem.getInferredItemInfo(GoogleCloudStorageFileSystem.java:1286)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageFileSystem.getInferredItemInfos(GoogleCloudStorageFileSystem.java:1311)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageFileSystem.getFileInfos(GoogleCloudStorageFileSystem.java:1212)
at com.google.cloud.hadoop.gcsio.GoogleCloudStorageFileSystem.rename(GoogleCloudStorageFileSystem.java:640)
at com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystemBase.rename(GoogleHadoopFileSystemBase.java:1091)
at org.apache.spark.streaming.CheckpointWriter$CheckpointWriteHandler.run(Checkpoint.scala:241)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
This goes on several times and eventually just block our spark streaming job on a task that goes on. I've got other warning too before :
16/12/10 18:05:23 WARN ReceivedBlockTracker: Exception thrown while writing record: BatchCleanupEvent(ArrayBuffer()) to the WriteAheadLog.
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:194)
at org.apache.spark.streaming.util.BatchedWriteAheadLog.write(BatchedWriteAheadLog.scala:83)
at org.apache.spark.streaming.scheduler.ReceivedBlockTracker.writeToLog(ReceivedBlockTracker.scala:234)
at org.apache.spark.streaming.scheduler.ReceivedBlockTracker.cleanupOldBatches(ReceivedBlockTracker.scala:171)
at org.apache.spark.streaming.scheduler.ReceiverTracker.cleanupOldBlocksAndBatches(ReceiverTracker.scala:226)
at org.apache.spark.streaming.scheduler.JobGenerator.clearCheckpointData(JobGenerator.scala:287)
at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:187)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:89)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:88)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [5000 milliseconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190)
... 9 more
16/12/10 18:05:23 WARN ReceivedBlockTracker: Failed to acknowledge batch clean up in the Write Ahead Log.
Does anyone have the same issues ?
Regards,
I faced similar errors in checkpointing to google storage recently. I started checkpointing to hdfs in dataproc rather than google storage as a temporary workaround.
I keep getting the the following exception very frequently and I wonder why this is happening? After researching I found I could do .set("spark.submit.deployMode", "nio"); but that did not work either and I am using spark 2.0.0
WARN TransportChannelHandler: Exception in connection from /172.31.3.245:46014
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:221)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:898)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:112)
I was getting the same error even if I tried many things.My job used to get stuck throwing this error after running a very long time. I tried few work around which helped me to resolve. Although, I still get the same error by at least my job runs fine.
one reason could be the executors kills themselves thinking that they lost the connection from the master. I added the below configurations in spark-defaults.conf file.
spark.network.timeout 10000000
spark.executor.heartbeatInterval 10000000
basically,I have increased the network timeout and heartbeat interval
The particular step which used to get stuck, I just cached the dataframe that is used for processing (in the step which used to get stuck)
Note:- These are work arounds, I still see the same error in error logs but the my job does not get terminated.