Posting An Image from Webcam to Azure Face Api - azure

I am trying to upload an image that I get from my webcam to the Microsoft Azure Face Api. I get the image from canvas.toDataUrl(‘image/png’) which contains the Data Uri. I change the Content Type to application/octet-stream and when I attach the Data Uri to the post request, I get a Bad Request (400) Invalid Face Image. If I change the attached data to a Blob, I stop receiving errors however I only get back an empty array instead of a JSON object. I would really appreciate any help for pointing me in the right direction.
Thanks!

Oh you're in such luck, i've just (successfully!) attempted this 2 days ago.
Sending base64-encoded JPEGs to Face API is seriously inefficient, The ratio of encoded output bytes to input bytes is 4:3 (33% overhead). Just send a byte array, it works, the docs mention it briefly.
And try to read as JPEG not PNG, that's just wasting bandwidth for webcam footage.
...
var dataUri = canvas.toDataURL('image/' + format);
var data = dataUri.split(',')[1];
var mimeType = dataUri.split(';')[0].slice(5)
var bytes = window.atob(data);
var buf = new ArrayBuffer(bytes.length);
var byteArr = new Uint8Array(buf);
for (var i = 0; i < bytes.length; i++) {
byteArr[i] = bytes.charCodeAt(i);
}
return byteArr;
Now use byteArr as your payload (data:) in $.ajax() for jQuery or iDontUnderStandHowWeGotHereAsAPeople() in any other hipster JS framework people use these days.
The reverse-hipster way of doing it is:
var payload = byteArr;
var xhr = new XMLHttpRequest();
xhr.open('POST', 'https://SERVICE_URL');
xhr.setRequestHeader('Content-Type', 'application/octet-stream');
xhr.send(payload);

To extend Dalvor's answer: this is the AJAX call that works for me:
fetch(data)
.then(res => res.blob())
.then(blobData => {
$.post({
url: "https://westus.api.cognitive.microsoft.com/face/v1.0/detect",
contentType: "application/octet-stream",
headers: {
'Ocp-Apim-Subscription-Key': '<YOUR-KEY-HERE>'
},
processData: false,
data: blobData
})
.done(function(data) {
$("#results").text(JSON.stringify(data));
})
.fail(function(err) {
$("#results").text(JSON.stringify(err));
})
Full demo code here: https://jsfiddle.net/miparnisari/b1zzpvye/

For saving someone's 6 hours, I appended my right code.
I hope this code helps you.
Tools
React
Typescript
React-webcam
Mac OS
Axios
Code
index.tsx
Constants and ref
/**
* Constants
*/
const videoConstraints = {
width: 1280,
height: 720,
facingMode: 'user',
};
/**
* Refs
*/
const webcamRef = React.useRef<Webcam>(null);
Call back function
const capture = React.useCallback(() => {
const base64Str = webcamRef.current!.getScreenshot() || '';
const s = base64Str.split(',');
const blob = b64toBlob(s[1]);
callCognitiveApi(blob);
}, [webcamRef]);
In render
<Webcam audio={false} ref={webcamRef} screenshotFormat="image/jpeg" videoConstraints={videoConstraints} />
<button onClick={capture}>Capture photo</button>
base64toBlob
Thanks to creating-a-blob-from-a-base64-string-in-javascript
export const b64toBlob = (b64DataStr: string, contentType = '', sliceSize = 512) => {
const byteCharacters = atob(b64DataStr);
const byteArrays = [];
for (let offset = 0; offset < byteCharacters.length; offset += sliceSize) {
const slice = byteCharacters.slice(offset, offset + sliceSize);
const byteNumbers = new Array(slice.length);
for (let i = 0; i < slice.length; i++) {
byteNumbers[i] = slice.charCodeAt(i);
}
const byteArray = new Uint8Array(byteNumbers);
byteArrays.push(byteArray);
}
const blob = new Blob(byteArrays, { type: contentType });
return blob;
};
callCognitiveApi
import axios from 'axios';
const subscriptionKey: string = 'This_is_your_subscription_key';
const url: string = 'https://this-is-your-site.cognitiveservices.azure.com/face/v1.0/detect';
export const callCognitiveApi = (data: any) => {
const config = {
headers: { 'content-type': 'application/octet-stream', 'Ocp-Apim-Subscription-Key': subscriptionKey },
};
const response = axios
.post(url, data, config)
.then((res) => {
console.log(res);
})
.catch((error) => {
console.error(error);
});
};
Result

So I got the answer finally by sending the image as a blob object. You first grab the image from canvas with:
let data = canvas.toDataURL('image/jpeg');
Afterwards, you can reformat it to a blob data object by running:
fetch(data)
.then(res => res.blob())
.then(blobData => {
// attach blobData as the data for the post request
}
You will also need to switch the Content-Type of the post request to "application/octet-stream"

Related

Azure Machine Learning REST Endpoint - Failed to Fetch

I created an Azure Machine Learning model with a REST Endpoint as a way to consume it. When I run the service using Postman everything seems to work fine.
However, when I try to create an HTML website (Codepen) with a javascript to call the REST Endpoint I only get an Error: Failed to Fetch message.
I also tried with Azure Static Web Apps and I am unsuccessful as well.
I was however able to verify (in the Console) that my input to the Rest Endpoint via Codepen is the same as Postman.
Is there anything I am missing out here?
Here is a sample of my javascript:
<script>
const form = document.querySelector('#agriculture-form');
form.addEventListener('submit', (event) => {
event.preventDefault();
const areaHarvest = parseFloat(document.querySelector('#area-harvest').value);
const farmGatePrice = parseFloat(document.querySelector('#farm-gate-price').value);
const volumeOfImport = parseFloat(document.querySelector('#volume-of-import').value);
const lowTemp = parseFloat(document.querySelector('#low-temp').value);
const averageTemp = parseFloat(document.querySelector('#average-temp').value);
const highTemp = parseFloat(document.querySelector('#high-temp').value);
const precipitationMm = parseFloat(document.querySelector('#precipitation-mm').value);
const precipitationDays = parseFloat(document.querySelector('#precipitation-days').value);
const tropicalCyclones = parseFloat(document.querySelector('#tropical-cyclones').value);
const volumeProductionGuess = 0;
const data = {
"Area_Harvested": areaHarvest,
"FarmGatePricePHPPSA": farmGatePrice,
"Volume_of_Import": volumeOfImport,
"temp_low": lowTemp,
"temp_ave": averageTemp,
"temp_high": highTemp,
"precipitation_mm": precipitationMm,
"precipitation_days": precipitationDays,
"tropical_cyclone": tropicalCyclones,
"Volume_of_Production": volumeProductionGuess
};
const formattedData = [data];
console.log('formatted data:', formattedData);
const testData = JSON.stringify(formattedData);
console.log('test data:', testData);
document.getElementById("demo").innerHTML = testData;
fetch('http://ziggyapimanagementservice.azure-api.net/score', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': 'cd529cc993494fdfb1530eaf04ae63dc'
},
body: testData
})
.then(response => response.json())
.then(data => {
console.log(data);
const result = data.result[0]; // Get the result array from the response
const volumeForecastElement = document.querySelector('#volume-forecast');
volumeForecastElement.textContent = result.join(', '); // Update the text content of the <b> element with the result array joined by commas
document.getElementById("result").innerHTML = result;
})
.catch(error => {
document.getElementById("error").innerHTML = error.message;
console.error(error.message)
});
});
And here is what I get in Postman:

File chunk upload to azure storage blob, file seems broken

I'm trying to upload excel file to azure storage blob in chunks, using the stage block and commitblock from BlobBlockClient Class. File upload seems to success but when i try to download and open the file, there it seems to be broken.
I'm using react and node js to do this. Code follows below
In UI
const chunkSize = (1024 * 1024) * 25; // file chunk size
// here slicing the file and sending it to api method
const fileReader = new FileReader();
const from = currentChunkIndexRef.current * chunkSize;
const to = from + chunkSize;
const blob = file.slice(from, to);
fileReader.onload = ((e: any) => uploadChunksToBlob(e, file, obj));
fileReader.readAsDataURL(blob);
// api method
const uploadChunksToBlob = async (event: any, file: File, obj: any) => {
try {
const totalChunks = Math.ceil(file.size / chunkSize);
const uploadChunkURL = `/upload?currentChunk=${currentChunkIndexRef.current}&totalChunks=${totalChunks}&file=${file.name}&type=${file.type}`;
console.log(event.target.result)
const fileUpload = await fetch(uploadChunkURL, {
method: "POST",
headers: { "Content-Type": "application/octet-stream" },
body: JSON.stringify(event.target.result),
});
const fileUploadJson = await fileUpload.json();
const isLastChunk = (totalChunks - 1) === currentChunkIndexRef.current;
if(!isLastChunk) {
console.log({ Chunk: currentChunkIndexRef.current });
currentChunkIndexRef.current = currentChunkIndexRef.current + 1;
// eslint-disable-next-line #typescript-eslint/no-use-before-define
uploadFileToAzureBlob(file, obj);
} else {
console.log("File Uploaded")
}
//
} catch (error) {
console.log("uploadFileToAzureBlob Catch Error" + error);
}
}
// In Node
const sharedKeyCredential = new StorageSharedKeyCredential(
config.StorageAccountName,
config.StorageAccountAccessKey
);
const pipeline = newPipeline(sharedKeyCredential);
const blobServiceClient = new BlobServiceClient(
`https://${config.StorageAccountName}.blob.core.windows.net`,
pipeline
);
const containerName = getContainerName(req.headers.key, req.headers.clientcode);
const identifier = uuid.v4();
const blobName = getBlobName(identifier, file);
const containerClient = blobServiceClient.getContainerClient(containerName);
const blockBlobClient = containerClient.getBlockBlobClient(blobName);
try {
let bufferObj = Buffer.from(`${file}_${Number(currentChunk)}`, "utf8"); // Create buffer object, specifying utf8 as encoding
let base64String = bufferObj.toString("base64"); // Encode the Buffer as a base64 string
blockIds = [...blockIds, base64String];
const bufferedData = Buffer.from(req.body);
let resultOfUnitArray = new Uint8Array(bufferedData.length);
for (let j = 0; j < bufferedData.length; j++) {
resultOfUnitArray[j] = bufferedData.toString().charCodeAt(j);
} // Converting string to bytes
const stageBlockResponse = await blockBlobClient.stageBlock(base64String, resultOfUnitArray, resultOfUnitArray.length, {
onProgress: (e) => {
console.log("bytes sent: " + e.loadedBytes);
}
});
if ((Number(totalChunks) - 1) === (Number(currentChunk))) {
const commitblockResponse = await blockBlobClient.commitBlockList(blockIds, {blobHTTPHeaders: req.headers});
res.json({ uuid: identifier, message: 'File uploaded to Azure Blob storage.' });
} else {
res.json({ message: `Current Chunks ${currentChunk} is Successfully Uploaded` });
}
} catch (err) {
console.log({ err })
res.json({ message: err.message });
}
I don't know, what i'm doing wrong here.
Any help would be appreciated
Thank you
The problem is that you convert it into dataURL, that’s where things break.
It appears to me that you're under the wrong impression that you need to first encode a blob into string in order to send it. Well, you don't have to, browser fetch API is capable to handle raw binary payload.
So on the client (browser) side, you don’t need to go through FileReader. Just send the chunk blob directly.
const blob = file.slice(from, to);
// ...
fetch(uploadChunkURL, {
method: "POST",
headers: { "Content-Type": "application/octet-stream" },
body: blob,
});
On the server (node.js) side, you'll receive the blob in raw binary form, so you can simply forward that blob untouched to azure storage. There's no need to decode from string and move bytes onto resultOfUnitArray like you currently do.
const base64String = Buffer.from(`${file}_${Number(currentChunk)}`, "utf8").toString("base64");
const bufferedData = Buffer.from(req.body);
const stageBlockResponse = await blockBlobClient.stageBlock(
base64String,
bufferedData,
bufferedData.length
);

How to display base64 string as image in email, using AWS SES

I am trying to show an image inside my e-mail. But that image is not getting displayed. I am using base64 string, which I am fetching from S3 bucket.
I am able to get email in inbox, but only thing image is not working when passing url, if directly using base64 hard coded string in html its working.
I need to fetch image from s3 and that image should be inline with email.
"use strict";
const fs = require("fs");
const path = require("path")
const Handlebars = require('handlebars');
const {SESClient, sendEmailCommand} = require("#aws-sdk/client-ses");
const {S3Client, GetObjectCommand} = require("#aws-sdk/client-s3");
let S3=null, SES=null;
const streamToBuffer = async(stream) =>{
return new Promise((resolve, reject) =>{
const chunks = [];
stream.on("data", (chunk) =>{chunks.push(chunk)});
stream.on("error", reject);
stream.on("end", () =>{resolve(Buffer.conact(chunks))});
})
}
export.handler = async(event) =>{
if(S3 === null){
S3 = new S3Client ({region: MY_REGION})
}
if(SES === null){
SES = new SESClient ({region: MY_REGION})
}
try{
let deatils = event.detail.fullDocument;
let imageKey = `${deatils.dir}/myimage.png`;
let imageFileFromS3 = await S3.send(
new GetObjectCommand({
Bucket: MY_BUCKET_NAME, key: imageKey
}))
let imageFileBuffer = await streamToBuffer(imageFileFromS3.Body)
let bufferToBase64 = imageFileBuffer.toString("base64");
const emailSubject = "Hey!! Test mail with image";
const emailData = {
Name: "Email Tester"
ImageSrc: `data:image/png;base64, ${bufferToBase64}`
}
let htmlTemplate = Handlebars.complie(fs.readFileSync(path.join(__dirname, 'templateSrc', email.html)).toString())
let textTemplate = Handlebars.complie(fs.readFileSync(path.join(__dirname, 'templateSrc', email.txt)).toString())
let emailResult = await SES.send( new SendEmailCommand({
Source: "Source_test#email.com", //dummy email for now
Destination :{
ToAddress: ["to_test#email.com"] // dummy address
},
Message: {
Subject: {
Charset: 'UTF-8',
Data: emailSubject
},
Body: {
Text: {
Charset: 'UTF-8',
Data: textTemplate(emailData)
},
Html:{
Charset: 'UTF-8',
Data: htmlTemplate(emailData)
}
}
}
}))
return emailResult
}catch(error){
console.log(error)
}
}
email.txt
Dear {{Name}}
Thanks for asking images on email.
Please find your requested images below
Face image
Bus image
-----Thanks
Email.html
<h1>Dear {{Name}}</h1>
<p>Thanks for asking images on email.</p>
<p>Please find your requested image below</p>
<p>face Image</p>
<img src={{ImageSrc}} />
<p>Bus Image</p>
<img src="">
//This image is working
<p>-------Thanks</p>
I have just resolved this issue...
So I thought, about posting answer for others help.
The root cause of this was- large size of my buffer response form S3, and email only supports 128MB data, as I found in cloud watch logs ( I can comment about AWS SES only, not sure about other email clients)
So the ultimate solution for my problem is just to resize the buffer response, which we are getting from S2.
So I have used sharp https://www.npmjs.com/package/sharp
And add these line in index.js
//Here I will resize the image
const resizedImageFileBuffer =
await sharp(imageFileBuffer)
.resize ({
width:200,
height:200,
fit: 'contain'
})
.toFormat('png')
.png({
quality:100,
compressionLevel: 6
})
.toBuffer()
//Now we will convert resized buffer to base64
let bufferToBase64 =
resizedImageFileBuffer.toString("base64");

how to solve audio encoding error in Media-translation GCP API?

Here's my code.
I have went through the google cloud platform API documentation, and followed as per the GCP DOC steps correctly. But still unable to fix the encoding error, which you can see it below. I'm trying to translate an audio clip from en-US(english) to hi-IN (hindi), and it would be helpful if you can give some alternative ways for this solution.
function main(filename, encoding, sourceLanguage, targetLanguage) {
const fs = require('fs');
const {
SpeechTranslationServiceClient,
} = require('#google-cloud/media-translation');
const client = new SpeechTranslationServiceClient();
async function quickstart() {
const filename = './16kmonoceo.wav';
const encoding = 'LINEAR16';
const sourceLanguage = 'en-US';
const targetLangauge = 'hi-IN';
const config = {
audioConfig: {
audioEncoding: encoding,
sourceLanguageCode: sourceLanguage,
targetLanguageCode: targetLangauge,
},
};
const initialRequest = {
streamingConfig: config,
audioContent: null,
};
const readStream = fs.createReadStream(filename, {
highWaterMark: 4096,
encoding: 'base64',
});
const chunks = [];
readStream
.on('data', chunk => {
const request = {
streamingConfig: config,
audioContent: chunk.toString(),
};
chunks.push(request);
})
.on('close', () => {
// Config-only request should be first in stream of requests
stream.write(initialRequest);
for (let i = 0; i < chunks.length; i++) {
stream.write(chunks[i]);
}
stream.end();
});
const stream = client.streamingTranslateSpeech().on('data', response => {
const {result} = response;
if (result.textTranslationResult.isFinal) {
console.log(
`\nFinal translation: ${result.textTranslationResult.translation}`
);
console.log(`Final recognition result: ${result.recognitionResult}`);
} else {
console.log(
`\nPartial translation: ${result.textTranslationResult.translation}`
);
console.log(`Partial recognition result: ${result.recognitionResult}`);
}
});
}
quickstart();
}
main(...process.argv.slice(2));
here my error from command line.
CHECK ERROR MESSAGE
I'm using windows 10 and IDE VS CODE.
This is a case where careful reading of the error message helps.
Some module gacked on "LINEAR16" as the audioEncoding value saying there's no encoding with that name.
A quick look at the documentation shows "linear16" (lower case) as the value to use.

Azure Functions - NodeJS - Response Body as a Stream

I'd like to return a file from Blob Storage when you hit a given Azure Function end-point. This file is binary data.
Per the Azure Storage Blob docs, the most relevant call appears to be the following since its the only one that doesn't require writing the file to an interim file:
getBlobToStream
However this call gets the Blob and writes it to a stream.
Is there a way with Azure Functions to use a Stream as the value of res.body so that I can get the Blob Contents from storage and immediately write it to the response?
To add some code, trying to get something like this to work:
'use strict';
const azure = require('azure-storage'),
stream = require('stream');
const BLOB_CONTAINER = 'DeContainer';
module.exports = function(context){
var file = context.bindingData.file;
var blobService = azure.createBlobService();
var outputStream = new stream.Writable();
blobService.getBlobToStream(BLOB_CONTAINER, file, outputStream, function(error, serverBlob) {
if(error) {
FileNotFound(context);
} else {
context.res = {
status: 200,
headers: {
},
isRaw: true,
body : outputStream
};
context.done();
}
});
}
function FileNotFound(context){
context.res = {
status: 404,
headers: {
"Content-Type" : "application/json"
},
body : { "Message" : "No esta aqui!."}
};
context.done();
}
Unfortunately we don't have streaming support implemented in NodeJS just yet - it's on the backlog: https://github.com/Azure/azure-webjobs-sdk-script/issues/1361
If you're not tied to NodeJ open to using a C# function instead, you can use the storage sdk object directly in your input bindings and stream request output, instead of using the intermediate object approach.
While #Matt Manson's answer is definitely correct based on the way I asked my question, the following code snippet might be more useful for someone who stumbles across this question.
While I can't send the Stream to the response body directly, I can use a custom stream which captures the data into a Uint8Array, and then sends that to the response body.
NOTE: If the file is REALLY big, this will use a lot of memory.
'use strict';
const azure = require('azure-storage'),
stream = require('stream');
const BLOB_CONTAINER = 'deContainer';
module.exports = function(context){
var file = context.bindingData.file;
var blobService = azure.createBlobService();
var outputStream = new stream.Writable();
outputStream.contents = new Uint8Array(0);//Initialize contents.
//Override the write to store the value to our "contents"
outputStream._write = function (chunk, encoding, done) {
var curChunk = new Uint8Array(chunk);
var tmp = new Uint8Array(this.contents.byteLength + curChunk.byteLength);
tmp.set(this.contents, 0);
tmp.set(curChunk, this.contents.byteLength);
this.contents = tmp;
done();
};
blobService.getBlobToStream(BLOB_CONTAINER, file, outputStream, function(error, serverBlob) {
if(error) {
FileNotFound(context);
} else {
context.res = {
status: 200,
headers: {
},
isRaw: true,
body : outputStream.contents
};
context.done();
}
});//*/
}
function FileNotFound(context){
context.res = {
status: 404,
headers: {
"Content-Type" : "application/json"
},
body : { "Message" : "No esta aqui!"}
};
context.done();
}
I tried #Doug's solution from the last comment above, with a few minor mods in my azure function, and so far, after trying 20 different ideas, this is the only one that actually delivered the file to the browser! Thank you, #Doug...
const fs = require("fs");
const stream = require("stream");
...
const AzureBlob = require('#[my_private_artifact]/azure-blob-storage');
const azureStorage = new AzureBlob(params.connectionString);
//Override the write to store the value to our "contents" <-- Doug's solution
var outputStream = new stream.Writable();
outputStream.contents = new Uint8Array(0);//Initialize contents.
outputStream._write = function (chunk, encoding, done) {
var curChunk = new Uint8Array(chunk);
var tmp = new Uint8Array(this.contents.byteLength + curChunk.byteLength);
tmp.set(this.contents, 0);
tmp.set(curChunk, this.contents.byteLength);
this.contents = tmp;
done();
};
let azureSpeedResult = await azureStorage.downloadBlobToStream(params.containerName, params.objectId, outputStream);
let headers = {
"Content-Length": azureSpeedResult.size,
"Content-Type": mimeType
};
if (params.action == "download") {
headers["Content-Disposition"] = "attachment; filename=" + params.fileName;
}
context.res = {
status: 200,
headers: headers,
isRaw: true,
body: outputStream.contents
};
context.done();
...

Resources