I am using keras 2.0.8 with tensorflow 1.3.0 backend.
I am loading a model in the class init and then use it to predict multithreaded.
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
class CNN:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
def query_cnn(self, data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
return self.cnn_model.predict(X)
I initialize the CNN once and the query_cnn method happens from multiple threads.
The exception i get in my log is:
File "/home/*/Similarity/CNN.py", line 43, in query_cnn
return self.cnn_model.predict(X)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 913, in predict
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1713, in predict
verbose=verbose, steps=steps)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1269, in _predict_loop
batch_outs = f(ins_batch)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2273, in __call__
**self.session_kwargs)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 895, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1321, in _do_run
options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: PruneForTargets: Some target nodes not found: group_deps
The code works fine most of the times, its probably some problem with the multithreading.
How can i fix it?
Make sure you finish the graph creation before creating the other threads.
Calling finalize() on the graph may help you with that.
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize()
Update 1: finalize() will make your graph read-only so it can be safely used in multiple threads. As a side effect, it will help you find unintentional behavior and sometimes memory leaks as it will throw an exception when you try to modify the graph.
Imagine that you have a thread that does for instance one hot encoding of your inputs. (bad example:)
def preprocessing(self, data):
one_hot_data = tf.one_hot(data, depth=self.num_classes)
return self.session.run(one_hot_data)
If you print the amount of objects in the graph you will notice that it will increase over time
# amount of nodes in tf graph
print(len(list(tf.get_default_graph().as_graph_def().node)))
But if you define the graph first that won't be the case (slightly better code):
def preprocessing(self, data):
# run pre-created operation with self.input as placeholder
return self.session.run(self.one_hot_data, feed_dict={self.input: data})
Update 2: According to this thread you need to call model._make_predict_function() on a keras model before doing multithreading.
Keras builds the GPU function the first time you call predict(). That
way, if you never call predict, you save some time and resources.
However, the first time you call predict is slightly slower than every
other time.
The updated code:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.cnn_model._make_predict_function() # have to initialize before threading
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # make graph read-only
Update 3: I did a proof of concept of a warming up, because _make_predict_function() doesn't seems to work as expected.
First I created a dummy model:
import tensorflow as tf
from keras.layers import *
from keras.models import *
model = Sequential()
model.add(Dense(256, input_shape=(2,)))
model.add(Dense(1, activation='softmax'))
model.compile(loss='mean_squared_error', optimizer='adam')
model.save("dummymodel")
Then in another script I loaded that model and made it run on multiple threads
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
import threading as t
import numpy as np
K.clear_session()
class CNN:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.cnn_model.predict(np.array([[0,0]])) # warmup
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # finalize
def preproccesing(self, data):
# dummy
return data
def query_cnn(self, data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
prediction = self.cnn_model.predict(X)
print(prediction)
return prediction
cnn = CNN("dummymodel")
th = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th2 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th3 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th4 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th5 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th.start()
th2.start()
th3.start()
th4.start()
th5.start()
th2.join()
th.join()
th3.join()
th5.join()
th4.join()
Commenting the lines for the warmingup and finalize I was able to reproduce your first issue
Related
I am trying to use Elmo from tensorflow hub with tf.keras, to perform NER. Training is fine and loss is decreasing, also test set gives good results. But I am unable to predict, as I get following error:
2019-05-02 15:41:42.785946: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
Traceback (most recent call last):
File "elmo_eva_brain.py", line 668, in <module>
np.array([['hello', 'world'] + ['--PAD--'] * 18])))
File "/home/ashwanipandey/eva_ml/experimental/eva_brain/venv/lib64/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1113, in predict
self, x, batch_size=batch_size, verbose=verbose, steps=steps)
File "/home/ashwanipandey/eva_ml/experimental/eva_brain/venv/lib64/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 329, in model_iteration
batch_outs = f(ins_batch)
File "/home/ashwanipandey/eva_ml/experimental/eva_brain/venv/lib64/python3.6/site-packages/tensorflow/python/keras/backend.py", line 3076, in __call__
run_metadata=self.run_metadata)
File "/home/ashwanipandey/eva_ml/experimental/eva_brain/venv/lib64/python3.6/site-packages/tensorflow/python/client/session.py", line 1439, in __call__
run_metadata_ptr)
File "/home/ashwanipandey/eva_ml/experimental/eva_brain/venv/lib64/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 528, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: len(seq_lens) != input.dims(0), (256 vs. 1)
[[{{node Embed/elmo/elmo_module_apply_tokens/bilm/ReverseSequence}}]]
[[{{node Tag/t_output/transpose_1}}]]
256 is my batch size during training. I am trying to predict just one sentence.
I tried to search a lot on internet, but all in vane. Any help is much appreciated.
I can definitely get predictions if I repeat my vector 256 times and set batch_size to 256 during prediction. But as you can see this is highly inefficient workaround.
Here is code for custom layer
class ElmoEmbeddingLayer(keras.layers.Layer):
def __init__(self, dimensions=1024, batch_size=512, word_size=20, **kwargs):
self.dimensions = 1024
self.trainable = True
self.batch_size = _BATCH_SIZE
self.word_size = _WORD_SIZE
super().__init__(**kwargs)
def build(self, input_shape):
self.elmo = hub.Module('https://tfhub.dev/google/elmo/2', trainable=self.trainable,
name=f"{self.name}_module")
super().build(input_shape)
def call(self, x, mask=None):
result = self.elmo(inputs={
"tokens": K.cast(x, tf.string),
"sequence_len": K.constant(self.batch_size*[self.word_size], dtype=tf.int32)
},
as_dict=True,
signature='tokens',
)['elmo']
return result
def compute_mask(self, inputs, mask=None):
return K.not_equal(inputs, '--PAD--')
def compute_output_shape(self, input_shape):
return (None, self.word_size, self.dimensions)
def get_config(self):
config = {
'dimensions': self.dimensions,
'trainable': self.trainable,
'batch_size': self.batch_size,
'word_size': self.word_size
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
Here is my model architecture:
model architecture
I had the same problem with you, working on an RNN ELMo pos-tagger model. Finally I followed the solution predicting in batches and keeping the test sample I want:
model.predict([X_test[:split_te]], batch_size=256)[0]
For more ideas (like copying weights) look here!
The number of samples (in train and also test set) must be divisible by the batch_size. Otherwise the last batch in keras will break the architecture.
So for example a solution is to use samples until split_tr for training and split_te for predicting:
split_tr = (X_train.shape[0]//BATCH_SIZE)*BATCH_SIZE
split_te = (X_test.shape[0]//BATCH_SIZE)*BATCH_SIZE
model.fit(X_train_text[:split_tr], y_train[:split_tr], batch_size=BATCH_SIZE, epochs=15, validation_data=(X_test_text[:split_te], y_test[:split_te]), verbose=1)
I am trying to load a Keras model for prediction only (i.e. I do not have to compile the model, per Pepslee's post here).
When I try to use model.predict_generator(), I get:
Using TensorFlow backend.
Exception in thread Thread-1:
Traceback (most recent call last):
File "/user/pkgs/anaconda2/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/user/pkgs/anaconda2/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "/user/pkgs/anaconda2/lib/python2.7/site-packages/keras/utils/data_utils.py", line 559, in _run
sequence = list(range(len(self.sequence)))
ValueError: __len__() should return >= 0
I am working with Tensorflow version 1.12.0, Keras version 2.2.4. I need to use these versions to ensure compatibility with my cuDNN version, which I have no control over.
How can I get around this error?
EDIT
I was asked for an example. Unfortunately there's too much proprietary info here for me to give much detail, but here are the bare bones (note the model is not actually an LSTM):
class LSTMmodel():
def __init__(self, hid1 = 10, batch_size=32, mode='test'):
self.hid_dim_1 = hid1
self.t_per_e, self.test_generator = self.read_data()
#Load the entire fitted model
model_name = ''.join(glob.glob('*model.h5'))
self.__model = load_model(model_name, compile=False)
def read_data(self):
num_test_minibatches = 10
test_IDs = range(111, 111+10)
params = {'list_IDs': test_IDs, 'batch_size': self.batch_size, 'n_vars': 354}
test_generator = DataGenerator(test_IDs, **params)
t_per_e = int(len(test_IDs) - self.batch_size + 1)
return t_per_e, test_generator
def lstm_model():
#Model building here. Not needed, since not compiling the model
return 0
def lstm_predict(self):
pred = self.__model.predict_generator(self.test_generator, self.t_per_e)
return pred
class DataGenerator(keras.utils.Sequence):
#Other methods in here as necessary
def __len__(self):
'Denotes the number of batches per epoch'
batches_per_epoch = int(np.floor(len(self.list_IDs) - self.batch_size + 1))
return batches_per_epoch
def __data_generation(self, other_params_here):
'Generates data containing batch_size samples'
return preprocessed_data
def test_lstm():
test_inst = LSTMmodel(hid1=10) #hid1 is a hyperparameter
test_prediction = test_inst.lstm_predict()
return test_prediction
if __name__ == '__main__':
testvals = test_lstm()
Basically, the workflow is:
1) test_lstm() creates an instance of the LSTMmodel class, and then calls lstm_predict.
2) lstm_predict uses predict_generator which takes in the generator for the test set and the number of examples to generate (steps from here).
3) The generator for the test set is created as an instance of class DataGenerator() in the read_data() method of class LSTMmodel(). Importantly, the test data generator is created in the same way as the training data generator and the validation data generator.
4) self.__model is created by loading a fully trained model in the init method of class LSTMmodel().
How can I get rid of the error?
I want to predict result by meta-features made from stacking with original features.
I have used mlxtend for stacking, and I tried to use original features with meta-features but this library can't work well.
from lightgbm import LGBMRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
from mlxtend.regressor import StackingRegressor
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_validate
boston= load_boston()
y = boston['target']
X = boston['data']
class extAll(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X):
return self
def predict(self, X):
return self
RF = RandomForestRegressor()
LGBM = LGBMRegressor()
pipe = make_pipeline(extAll())
stack1 = StackingRegressor(regressors=[RF,LGBM,pipe], meta_regressor=LGBM, verbose=1)
scores = cross_validate(stack1, X, y, cv=10)
and errors occured as
Fitting 3 regressors...
Fitting regressor1: randomforestregressor (1/3)
Fitting regressor2: lgbmregressor (2/3)
Fitting regressor3: pipeline (3/3)
Traceback (most recent call last):
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2963, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\regressor\stacking_regression.py", line 154, in fit
meta_features = self.predict_meta_features(X)
File "C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\regressor\stacking_regression.py", line 221, in predict_meta_features
return np.column_stack([r.predict(X) for r in self.regr_])
File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\lib\shape_base.py", line 369, in column_stack
return _nx.concatenate(arrays, 1)
ValueError: all the input array dimensions except for the concatenation axis must match exactly
I think it was caused by original data which had multi-dimensional.
I want to know a better method or tools.
What should I do?
The code has some mistake in the part of the prediction.
It should be correct as
class extAll(BaseEstimator, TransformerMixin,RegressorMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X):
return self
def predict(self, X):
return X
When we develop a scikit-learn type method, RegressorMixin or ClassifierMixin is needed for predictions. This code works well.
I'm trying to build a system to check sentence similarities using a siamese LSTM model using Manhattan distance as the distance function while merging two layers.
I'm using the code found in this article
https://medium.com/mlreview/implementing-malstm-on-kaggles-quora-question-pairs-competition-8b31b0b16a07
The issue is that after I've built and saved the model in a json file I'm unable to load the model as an error gets thrown saying
name 'exponent_neg_manhattan_distance' is not defined
Here's the code:
# Model variables
n_hidden = 50
gradient_clipping_norm = 1.25
batch_size = 64
n_epoch = 5
def exponent_neg_manhattan_distance(left, right):
''' Helper function for the similarity estimate of the LSTMs outputs'''
return K.exp(-K.sum(K.abs(left-right), axis=1, keepdims=True))
# The visible layer
left_input = Input(shape=(max_seq_length,), dtype='int32')
right_input = Input(shape=(max_seq_length,), dtype='int32')
embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=max_seq_length, trainable=False)
# Embedded version of the inputs
encoded_left = embedding_layer(left_input)
encoded_right = embedding_layer(right_input)
# Since this is a siamese network, both sides share the same LSTM
shared_lstm = LSTM(n_hidden)
left_output = shared_lstm(encoded_left)
right_output = shared_lstm(encoded_right)
# Calculates the distance as defined by the MaLSTM model
malstm_distance = Merge(mode=lambda x: exponent_neg_manhattan_distance(x[0], x[1]), output_shape=lambda x: (x[0][0], 1))([left_output, right_output])
# Pack it all up into a model
malstm = Model([left_input, right_input], [malstm_distance])
# Adadelta optimizer, with gradient clipping by norm
optimizer = Adadelta(clipnorm=gradient_clipping_norm)
malstm.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])
# Start training
training_start_time = time()
malstm_trained = malstm.fit([X_train['left'], X_train['right']], Y_train, batch_size=batch_size, nb_epoch=n_epoch,
validation_data=([X_validation['left'], X_validation['right']], Y_validation))
print("Training time finished.\n{} epochs in {}".format(n_epoch, datetime.timedelta(seconds=time()-training_start_time)))
malstm.save('malstm.h5')
model_json = malstm.to_json()
with open ('malstm.json', 'w') as file:
file.write(model_json)
malstm.save_weights('malst_w.h5')
Now when I try to load the model I get the following error:
model = model_from_json(open('malstm.json').read(), custom_objects = {"exponent_neg_manhattan_distance":exponent_neg_manhattan_distance})
C:\Users\archi\Miniconda3\lib\site-packages\keras\engine\topology.py:1271: UserWarning: The `Merge` layer is deprecated and will be removed after 08/2017. Use instead layers from `keras.layers.merge`, e.g. `add`, `concatenate`, etc.
return cls(**config)
Traceback (most recent call last):
File "<ipython-input-12-4c72a4db6c29>", line 1, in <module>
model = model_from_json(open('malstm.json').read(), custom_objects = {"exponent_neg_manhattan_distance":exponent_neg_manhattan_distance})
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\models.py", line 349, in model_from_json
return layer_module.deserialize(config, custom_objects=custom_objects)
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\layers\__init__.py", line 55, in deserialize
printable_module_name='layer')
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\utils\generic_utils.py", line 144, in deserialize_keras_object
list(custom_objects.items())))
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\engine\topology.py", line 2524, in from_config
process_node(layer, node_data)
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\engine\topology.py", line 2483, in process_node
layer(input_tensors, **kwargs)
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\engine\topology.py", line 619, in __call__
output = self.call(inputs, **kwargs)
File "C:\Users\archi\Miniconda3\lib\site-packages\keras\legacy\layers.py", line 209, in call
return self.mode(inputs, **arguments)
File "<ipython-input-19-913812c640b3>", line 28, in <lambda>
NameError: name 'exponent_neg_manhattan_distance' is not defined
I've searched online and the issue is probably because of the use of the lambda function. Is there any way I could load this model because it took a crazy amount of time to train. Any help would be appreciated!
First save your model with model.save
Then load with with custom objects
model.save("model_path")
from keras.models import load_model
# Returns a compiled model identical to the previous one model =
load_model('model_path',
custom_objects={
'RAdam':RAdam,
'exponent_neg_manhattan_distance':exponent_neg_manhattan_distance})
Converting comment into answer: you can salvage the weights of the network if you just create it yourself in code again. The error is about creating the network from JSON, but let's follow from:
# ...
# Pack it all up into a model
malstm = Model([left_input, right_input], [malstm_distance])
# ... you don't need compile for only predict
# ... skip training and model saving
# malstm.save_weights('malst_w.h5')
malstm.load_weights('malst_w.h5')
malstm.predict(...)
now, the weights are loaded into the existing model which you created in code.
I am calling Keras predict_generator() like:
bottleneck_features_train = model.predict_generator(train_gen, len(telemetry))
where train_gen() is defined like
def train_gen():
# ...
yield (X, y)
and X is a numpy array with shape (48, 299, 299, 3), y is a numpy array with shape (48,)
I get the error below. What should I do instead?
Otherwise, a link to a working example would help. Only examples I have found are for Keras 1 or using ImageDataGenerator.flow().
I am running Keras 2.0.2.
Here the error:
Traceback (most recent call last):
File "/home/fanta/workspace/CarND-Behavioral-Cloning-P3/cache.py", line 143, in <module>
tf.app.run()
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/home/fanta/workspace/CarND-Behavioral-Cloning-P3/cache.py", line 138, in main
bottleneck_features_train = model.predict_generator(train_gen, len(telemetry))
File "/usr/local/lib/python3.5/dist-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 2094, in predict_generator
outs = self.predict_on_batch(x)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1677, in predict_on_batch
self._feed_input_shapes)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 100, in _standardize_input_data
'Found: array with shape ' + str(data.shape))
ValueError: The model expects 0 input arrays, but only received one array. Found: array with shape (48, 299, 299, 3)
Process finished with exit code 1
===== UPDATE =====
The issue is not related to the generator. Here below a short program to reproduce it. Note that if you switch the network from inception to vgg, it works fine.
from keras.applications.inception_v3 import InceptionV3
from keras.applications.vgg16 import VGG16
from keras.layers import Input, AveragePooling2D
from keras.models import Model
from keras.datasets import cifar10
from scipy.misc import imresize
import pickle
import tensorflow as tf
import keras.backend as K
import numpy as np
network='inception' # Must be 'inception' or 'vgg'
dataset='cifar10'
batch_size=64
if network == 'vgg':
size = (224, 224)
elif network == 'inception':
size = (299, 299)
else:
assert False, "network must be either 'inception' or 'vgg'"
def create_model():
input_tensor = Input(shape=(size[0], size[1], 3))
if network == 'inception':
model = InceptionV3(input_tensor=input_tensor, include_top=False)
x = model.output
x = AveragePooling2D((8, 8), strides=(8, 8))(x)
model = Model(model.input, x)
elif network == 'vgg':
model = VGG16(input_tensor=input_tensor, include_top=False)
x = model.output
x = AveragePooling2D((7, 7))(x)
model = Model(model.input, x)
else:
assert False
return model
def main():
# Download and load cifar10 dataset
(X_train, y_train), (_, _) = cifar10.load_data()
# Reduce the dataset to the first 1000 entries, to save memory and computation time
X_train = X_train[0:1000]
y_train = y_train[0:1000]
# Resize dataset images to comply with expected input image size
X_train = [imresize(image, size) for image in X_train]
X_train = np.array(X_train)
# File name where to save bottlenecked features
train_output_file = "{}_{}_{}.p".format(network, dataset, 'bottleneck_features_train')
print("Saving to", train_output_file)
with tf.Session() as sess:
K.set_session(sess)
K.set_learning_phase(1)
model = create_model()
# We skip pre-processing and bottleneck the features
bottleneck_features_train = model.predict(X_train, batch_size=batch_size, verbose=1)
data = {'features': bottleneck_features_train, 'labels': y_train}
pickle.dump(data, open(train_output_file, 'wb'))
if __name__ == '__main__':
main()
At prediction step your generator should only yield the input and not the targets. So only the X, not the y.
Does that help?