I have a set of Excel format files which needs to be read from Spark(2.0.0) as and when an Excel file is loaded into a local directory. Scala version used here is 2.11.8.
I've tried using readstream method of SparkSession, but I'm not able to read in a streaming way. I'm able to read Excel files statically as:
val df = spark.read.format("com.crealytics.spark.excel").option("sheetName", "Data").option("useHeader", "true").load("Sample.xlsx")
Is there any other way of reading excel files in streaming way from a local directory?
Any answers would be helpful.
Thanks
Changes done:
val spark = SparkSession.builder().master("local[*]").config("spark.sql.warehouse.dir","file:///D:/pooja").appName("Spark SQL Example").getOrCreate()
spark.conf.set("spark.sql.streaming.schemaInference", true)
import spark.implicits._
val dataFrame = spark.readStream.format("csv").option("inferSchema",true).option("header", true).load("file:///D:/pooja/sample.csv")
dataFrame.writeStream.format("console").start()
dataFrame.show()
Updated code:
val spark = SparkSession.builder().master("local[*]").appName("Spark SQL Example").getOrCreate()
spark.conf.set("spark.sql.streaming.schemaInference", true)
import spark.implicits._
val df = spark.readStream.format("com.crealytics.spark.excel").option("header", true).load("file:///filepath/*.xlsx")
df.writeStream.format("memory").queryName("tab").start().awaitTermination()
val res = spark.sql("select * from tab")
res.show()
Error:
Exception in thread "main" java.lang.UnsupportedOperationException: Data source com.crealytics.spark.excel does not support streamed reading
Can anyone help me resolve this issue.
For a streaming DataFrame you have to provide Schema and currently, DataStreamReader does not support option("inferSchema", true|false). You can set SQLConf setting spark.sql.streaming.schemaInference, which needs to be set at session level.
You can refer here
Related
I have a large table(around 300gb) and a ram of about (50Gb), and 8 cpus.
I want to move my psql table into google cloud storage using spark and jdbc connection. very similar to:How to convert an 500GB SQL table into Apache Parquet?.
I know my connections work, because I was able to move a small table. But with large table I get memory issues. How can I optimize it?
import pyspark
from pyspark.sql import SQLContext
from pyspark import SparkContext
from pyspark.sql import DataFrameReader
conf = pyspark.SparkConf().setAll([("spark.driver.extraClassPath", "/usr/local/bin/postgresql-42.2.5.jar:/usr/local/jar/gcs-connector-hadoop2-latest.jar")
,("spark.executor.instances", "8")
,("spark.executor.cores", "4")
,("spark.executor.memory", "1g")
,("spark.driver.memory", "6g")
,("spark.memory.offHeap.enabled","true")
,("spark.memory.offHeap.size","40g")])
sc = pyspark.SparkContext(conf=conf)
sc.getConf().getAll()
sc._jsc.hadoopConfiguration().set("google.cloud.auth.service.account.json.keyfile","/home/user/analytics/gcloud_key_name.json")
sqlContext = SQLContext(sc)
url = 'postgresql://address:port/db_name'
properties = {
'user': 'user',
'password': 'password'}
df_users = sqlContext.read.jdbc(
url='jdbc:%s' % url, table='users', properties=properties
)
gcloud_path= "gs://BUCKET/users"
df_users.write.mode('overwrite').parquet(gcloud_path)
Bonus question:
can I do partition now, or first I should save it as parquet then read it and repartition it?
Bonus question2:
If the answer to Bonus question 1 is yes, can I do sort it now, or first I should save it as parquet then read it and repartition it?
I'm tried to load a local file as dataframe with using spark_session and sqlContext.
df = spark_session.read...load(localpath)
It couldn't read local files. df is empty.
But, after creating sqlcontext from spark_context, it could load a local file.
sqlContext = SQLContext(spark_context)
df = sqlContext.read...load(localpath)
It worked fine. But I can't understand why. What is the cause ?
Envionment: Windows10, spark 2.2.1
EDIT
Finally I've resolved this problem. The root cause is version difference between PySpark installed with pip and PySpark installed in local file system. PySpark failed to start because of py4j failing.
I am pasting a sample code that might help. We have used this to create a Sparksession object and read a local file with it:
import org.apache.spark.sql.SparkSession
object SetTopBox_KPI1_1 {
def main(args: Array[String]): Unit = {
if(args.length < 2) {
System.err.println("SetTopBox Data Analysis <Input-File> OR <Output-File> is missing")
System.exit(1)
}
val spark = SparkSession.builder().appName("KPI1_1").getOrCreate()
val record = spark.read.textFile(args(0)).rdd
.....
On the whole, in Spark 2.2 the preferred way to use Spark is by creating a SparkSession object.
I have a file which is file1snappy.parquet. It is having a complex data structure like a map, array inside that.After processing that I got final result.while writing that results to csv I am getting some error saying
"Exception in thread "main" java.lang.UnsupportedOperationException: CSV data source does not support map<string,bigint> data type."
Code which I have used:
val conf=new SparkConf().setAppName("student-example").setMaster("local")
val sc = new SparkContext(conf)
val sqlcontext = new org.apache.spark.sql.SQLContext(sc)
val datadf = sqlcontext.read.parquet("C:\\file1.snappy.parquet")
def sumaggr=udf((aggr: Map[String, collection.mutable.WrappedArray[Long]]) => if (aggr.keySet.contains("aggr")) aggr("aggr").sum else 0)
datadf.select(col("neid"),sumaggr(col("marks")).as("sum")).filter(col("sum") =!= 0).show(false)
datadf.write.format("com.databricks.spark.csv").option("header", "true").save("C:\\myfile.csv")
I tried converting datadf.toString() but still I am facing same issue.
How can write that result to CSV.
spark version 2.1.1
Spark CSV source supports only atomic types. You cannot store any columns that are non-atomic
I think best is to create a JSON for the column that has map<string,bigint> as a datatype and save it in csv as below.
import spark.implicits._
import org.apache.spark.sql.functions._
datadf.withColumn("column_name_with_map_type", to_json(struct($"column_name_with_map_type"))).write.csv("outputpath")
Hope this helps!
You are trying to save the output of
val datadf = sqlcontext.read.parquet("C:\\file1.snappy.parquet")
which I guess is a mistake as the udf function and all the aggregation done would go in vain if you do so
So I think you want to save the output of
datadf.select(col("neid"),sumaggr(col("marks")).as("sum")).filter(col("sum") =!= 0).show(false)
So you need to save it in a new dataframe variable and use that variable to save.
val finalDF = datadf.select(col("neid"),sumaggr(col("marks")).as("sum")).filter(col("sum") =!= 0)
finalDF.write.format("com.databricks.spark.csv").option("header", "true").save("C:\\myfile.csv")
And you should be fine.
I am connecting to hbase ( ver 1.2) via phoenix (4.11) queryserver from Spark 2.2.0, but the dataframe is returning the only table structure with empty rows thoug data is present in table.
Here is the code I am using to connect to queryserver.
// ---jar ----phoenix-4.11.0-HBase-1.2-thin-client.jar<br>
val prop = new java.util.Properties
prop.setProperty("driver", "org.apache.phoenix.queryserver.client.Driver")
val url = "jdbc:phoenix:thin:url=http://localhost:8765;serialization=PROTOBUF"
val d1 = spark.sqlContext.read.jdbc(url,"TABLE1",prop)
d1.show()
Can anyone please help me in solving this issue. Thanks in advance
If you are using spark2.2 the better approach would be to load directly via pheonix as a dataframe.This way you would provide the zookeeper url only and you can provide a predicate so that you load only the data required and not the entire data.
import org.apache.phoenix.spark._
import org.apache.hadoop.conf.Configuration
importĀ org.apache.spark.sql.SparkSession
val configuration = new Configuration()
configuration.set("hbase.zookeeper.quorum", "localhost:2181");
valĀ spark = SparkSession.builder().master("local").enableHiveSupport().getOrCreate()
val df=spark.sqlContext.phoenixTableAsDataFrame("TABLE1",Seq("COL1","COL2"),predicate = Some("\"COL1\" = 1"),conf = configuration)
Read this for more info on getting table as rdd and saving dataframes and rdd's .
I'm consuming the XML file from kafka topic .Can anyone tell me how to parse the XML into dataframe.
val df = sqlContext.read
.format("com.databricks.spark.xml")
//.option("rowTag","ns:header")
// .options(Map("rowTag"->"ntfyTrns:payloadHeader","rowTag"->"ns:header"))
.option("rowTag","ntfyTrnsDt:notifyTransactionDetailsReq")
.load("/home/ubuntu/SourceXML.xml")
df.show
df.printSchema()
df.select(col("ns:header.ns:captureSystem")).show()
I able to exact the information information from XML .I dont know how to pass or convert or load the RDD[String] from kafka topic to sql read API.
Thanks!
I am facing the same situation, doing some research I found that some people is using this method to convert the RDD to a DataFrame using the following code as shown here:
val wrapped = rdd.map(xml => s"""<a>$xml</a>""")
val df = new XmlReader().xmlRdd(sqlContext, wrapped)
You just have to obtain the RDD from the DStream, I am doing this using pyspark
streamElement = ssc.textFileStream("s3n://your_path")
streamElement.foreachRDD(process)
where process method has the following structure, so you can do everything with your rdds
def process(time, rdd):
return value