When I call a function it works. but when I call that function in UDF will not work.
This is full code.
val sparkConf = new SparkConf().setAppName("HiveFromSpark").set("spark.driver.allowMultipleContexts","true")
val sc = new SparkContext(sparkConf)
val hive = new org.apache.spark.sql.hive.HiveContext(sc)
///////////// UDFS
def toDoubleArrayFun(vec:Any) : scala.Array[Double] = {
return vec.asInstanceOf[WrappedArray[Double]].toArray
}
def toDoubleArray=udf((vec:Any) => toDoubleArrayFun(vec))
//////////// PROCESS
var df = hive.sql("select vec from mst_wordvector_tapi_128dim where word='soccer'")
println("==== test get value then transform")
println(df.head().get(0))
println(toDoubleArrayFun(df.head().get(0)))
println("==== test transform by udf")
df.withColumn("word_v", toDoubleArray(col("vec")))
.show(10);
Then this the output.
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext#6e9484ad
hive: org.apache.spark.sql.hive.HiveContext =
toDoubleArrayFun: (vec: Any)Array[Double]
toDoubleArray: org.apache.spark.sql.UserDefinedFunction
df: org.apache.spark.sql.DataFrame = [vec: array<double>]
==== test get value then transform
WrappedArray(-0.88675,, 0.0216657)
[D#4afcc447
==== test transform by udf
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 5, xdad008.band.nhnsystem.com): java.lang.ClassNotFoundException: $iwC$$iwC$$iwC$$iwC$$iwC$$$$5ba2a895f25683dd48fe725fd825a71$$$$$$iwC$$anonfun$toDoubleArray$1
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
Full output here.
https://gist.github.com/jeesim2/efb52f12d6cd4c1b255fd0c917411370
As you can see "toDoubleArrayFun" function works well, but in udf it claims ClassNotFoundException.
I can not change the hive data structure, and need to convert vec to Array[Double] to make a Vector instance.
So what problem with code above?
Spark version is 1.6.1
Update 1
Hive table's 'vec' column type is "array<double>"
Below code also cause error
var df = hive.sql("select vec from mst_wordvector_tapi_128dim where
word='hh'")
df.printSchema()
var word_vec = df.head().get(0)
println(word_vec)
println(Vectors.dense(word_vec))
output
df: org.apache.spark.sql.DataFrame = [vec: array<double>]
root
|-- vec: array (nullable = true)
| |-- element: double (containsNull = true)
==== test get value then transform
word_vec: Any = WrappedArray(-0.88675,...7)
<console>:288: error: overloaded method value dense with alternatives:
(values: Array[Double])org.apache.spark.mllib.linalg.Vector <and>
(firstValue: Double,otherValues:Double*)org.apache.spark.mllib.linalg.Vector
cannot be applied to (Any)
println(Vectors.dense(word_vec))
This means hive 'array<double>' column cant not be casted to Array<Double>
Actually I want to calculate distance:Double with two array<double> column.
How do I add Vector column based on array<double> column?
Typical method is
Vectors.sqrt(Vectors.dense(Array<Double>, Array<Double>)
Since udf function has to go serialization and deserialization process, any DataType will not work. You will have to define exact DataType of the column you are passing to the udf function.
From the output in your question it seems that you have only one column in your dataframe i.e. vec which is of Array[Double] type
df: org.apache.spark.sql.DataFrame = [vec: array<double>]
There actually is no need of that udf function as your vec column is already of Array dataType and that is what your udf function is doing as well i.e. casting the value to Array[Double].
Now, your other function call is working
println(toDoubleArrayFun(df.head().get(0)))
because there is no need of serialization and de-serialization process, its just scala function call.
Related
I want to pass more than one column name as a parameter to dataframe.
val readData = spark.sqlContext
.read.format("csv")
.option("delimiter",",")
.schema(Schema)
.load("emp.csv")
val cols_list1 = "emp_id,emp_dt"
val cols_list2 = "emp_num"
val RemoveDupli_DF = readData
.withColumn("rnk", row_number().over(Window.partitionBy(s"$cols_list1").orderBy(s"$cols_list2") ))
Above code is working, if i have one column name , whereas with two or more columns, its giving below error.
Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve 'emp_id,emp_dt'
Using Scala 2.x version.
The partitionBy method as multiple signatures:
def partitionBy(colName: String, colNames: String*)
// or
def partitionBy(cols: Column*)
Your code is providing the list of columns as a single string which will fail because there is no column called emp_id,emp_dt. Hence, you get the error message.
You could define your column names (as Strings) in a collection
val cols_seq1 = Seq("emp_id","emp_dt")
and then call partitionsBy like this:
Window.partitionBy(cols_seq1: _*)
The notation : _* tells the compiler to pass each element of cols_seq1 as its own argument into the partitionBy call rather than all of it as a single argument.
As an alternative you could also just use
Window.partitionBy("emp_id", "emp_dt")
I trying to register my UDF function and want to use this in my spark sql query but not able to register my udf Im getting below error.
val squared = (s: Column) => {
concat(substring(s,4,2),year(to_date(from_unixtime(unix_timestamp(s,"dd-MM-yyyy")))))
}
squared: org.apache.spark.sql.Column => org.apache.spark.sql.Column = <function1>
scala> sqlContext.udf.register("dc",squared)
java.lang.UnsupportedOperationException: Schema for type org.apache.spark.sql.Column is not supported
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:733)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:671)
at org.apache.spark.sql.UDFRegistration.register(UDFRegistration.scala:143)
... 48 elided
I tried to change Column to String but getting below error.
val squared = (s: String) => {
| concat(substring(s,4,2),year(to_date(from_unixtime(unix_timestamp(s,"dd-MM-yyyy")))))
| }
<console>:28: error: type mismatch;
found : String
required: org.apache.spark.sql.Column
concat(substring(s,4,2),year(to_date(from_unixtime(unix_timestamp(s,"dd-MM-yyyy")))))
can someone please guide me how should i implement this.
All spark functions from this package org.apache.spark.sql.functions._ will not be able to access inside UDF.
Instead of built in spark functions ..you can use plain scala code to get same result.
val df = spark.sql("select * from your_table")
def date_concat(date:Column): Column = {
concat(substring(date,4,2),year(to_date(from_unixtime(unix_timestamp(date,"dd-MM-yyyy")))))
}
df.withColumn("date_column_name",date_concat($"date_column_name")) // with function.
df.withColumn("date_column_name",concat(substring($"date_column_name",4,2),year(to_date(from_unixtime(unix_timestamp($"date_column_name","dd-MM-yyyy")))))) // without function, direct method.
df.createOrReplaceTempView("table_name")
spark.sql("[...]") // Write your furthur logic in sql if you want.
I have a problem. I want to create a DataFrame in UDF and use my model to transform it to another. But I get this Exception. Is there something wrong in Spark Conf? I don't know. Is there anyone can help me to solve this problem?
Code:
val model = PipelineModel.load("/user/abel/model/pipeline_model")
val modelBroad = spark.sparkContext.broadcast(model)
def model_predict(id:Long, text:String):Double = {
val modelLoaded = modelBroad.value
val sparkss = SparkSession.builder.master("local[*]").getOrCreate()
val dataDF = sparkss.createDataFrame(Seq((id,text))).toDF("id","text")
val result = modelLoaded.transform(dataDF).select("prediction").collect().apply(0).getDouble(0)
println(f"The prediction of $id and $text is $result")
result
}
val udf_func = udf(model_predict _)
test.withColumn("prediction",udf_func($"id",$"text")).show()
Exception:
Caused by: java.lang.NullPointerException
at org.apache.spark.sql.execution.SparkPlan.sparkContext(SparkPlan.scala:56)
at org.apache.spark.sql.execution.LocalTableScanExec.metrics$lzycompute(LocalTableScanExec.scala:37)
at org.apache.spark.sql.execution.LocalTableScanExec.metrics(LocalTableScanExec.scala:36)
at org.apache.spark.sql.execution.SparkPlan.resetMetrics(SparkPlan.scala:85)
at org.apache.spark.sql.Dataset$$anonfun$withAction$1.apply(Dataset.scala:3366)
at org.apache.spark.sql.Dataset$$anonfun$withAction$1.apply(Dataset.scala:3365)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreach(TreeNode.scala:117)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3365)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2788)
at com.zamplus.mine.SparkSubmit$.com$zamplus$mine$SparkSubmit$$model_predict$1(SparkSubmit.scala:21)
at com.zamplus.mine.SparkSubmit$$anonfun$1.apply(SparkSubmit.scala:40)
at com.zamplus.mine.SparkSubmit$$anonfun$1.apply(SparkSubmit.scala:40)
... 22 more
There is issue with your UDF. UDF runs on multiple instances and uses all variables that we are using inside it. So you should passed all required global variable as a parameters such as modelBroad otherwise it will give you null pointer exception.
There are few more good practice that you are not following in UDF. Some of are:
You do not need to create spark session in UDF. Otherwise it will create multiple spark session and which will cause issues. Instead of this pass global spark session as a variable in UDF if required.
Remove unnecessary pritnln in UDF, which effect your return also.
I have changed your code just for reference. It is just a prototype of ideal UDF. Please change it accordingly.
val sparkss = SparkSession.builder.master("local[*]").getOrCreate()
val model = PipelineModel.load("/user/abel/model/pipeline_model")
val modelBroad = spark.sparkContext.broadcast(model)
def model_predict(id:Long, text:String,spark:SparkSession,modelBroad:<datatype>):Double = {
val modelLoaded = modelBroad.value
val dataDF = spark.createDataFrame(Seq((id,text))).toDF("id","text")
val result = modelLoaded.transform(dataDF).select("prediction").collect().apply(0).getDouble(0)
result
}
val udf_func = udf(model_predict _)
test.withColumn("prediction",udf_func($"id",$"text",lit(sparkss),lit(modelBroad))).show()
I've been experimenting with Spark's mapPartitionsWithIndex and I ran into problems when
trying to return an Iterator of a tuple that itself contained an empty iterator.
I tried several different ways of constructing the inner iterator [ via Iterator(), and List(...).iterator ], and
all roads let to my getting this error:
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 2.0 in stage 0.0 (TID 2) had a not serializable result: scala.collection.LinearSeqLike$$anon$1
Serialization stack:
- object not serializable (class: scala.collection.LinearSeqLike$$anon$1, value: empty iterator)
- field (class: scala.Tuple2, name: _2, type: class java.lang.Object)
- object (class scala.Tuple2, (1,empty iterator))
- element of array (index: 0)
- array (class [Lscala.Tuple2;, size 1)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
My code example is given below. Note that as given it runs OK (an empty iterator is returned as the
mapPartitionsWithIndex value.) But when you run with the now commented-out version of
the mapPartitionsWithIndex invocations you will get the error above.
If anyone has a suggestion on how to this can be made to work, I'd be much obliged.
import org.apache.spark.{Partition, SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object ANonWorkingExample extends App {
val sparkConf = new SparkConf().setAppName("continuous").setMaster("local[*]")
val sc = new SparkContext(sparkConf)
val parallel: RDD[Int] = sc.parallelize(1 to 9)
val parts: Array[Partition] = parallel.partitions
val partRDD: RDD[(Int, Iterator[Int])] =
parallel.coalesce(3).
mapPartitionsWithIndex {
(partitionIndex: Int, inputiterator: Iterator[Int]) =>
val mappedInput: Iterator[Int] = inputiterator.map(_ + 1)
// Iterator((partitionIndex, mappedInput)) // FAILS
Iterator() // no exception.. but not really what i want.
}
val data = partRDD.collect
println("data:" + data.toList);
}
I am not sure what you are trying to achieve and I am a sort of novice compared to some of the expert folks here.
I present something that may give you an idea of how to do things I think correctly and make some comments:
You seem to get the partitions explicitly and call mapPartitions - a 1st for me.
RDD inside mapPartitions and the various SPARK SCALA thing will not fly; it is about iterables and I think you need to drop to SCALA only level.
The serializeable error come from doing List[Int].
Here is an example showing index partition along with those corresponding index values.
import org.apache.spark.{Partition, SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}
// from your stuff, left in
val parallel: RDD[Int] = sc.parallelize(1 to 9, 4)
val mapped = parallel.mapPartitionsWithIndex{
(index, iterator) => {
println("Called in Partition -> " + index)
val myList = iterator.toList
myList.map(x => (index, x)).groupBy( _._1 ).mapValues( _.map( _._2 ) ).toList.iterator
}
}
mapped.collect()
This returns the following that resembles a little of what I think you seemed to want:
res38: Array[(Int, List[Int])] = Array((0,List(1, 2)), (1,List(3, 4)), (2,List(5, 6)), (3,List(7, 8, 9)))
Final note: the documentation and such is not so easy to follow, you don't get it all from word count example!
So, hope this helps.
I think it might get you on the right path to where you want to go, I could not quite see it, but may be you can now see the forest for the trees.
So, the dumb thing I was doing was trying to return an unserializable data structure: an Iterator, as clearly indicated by the stack trace I got.
And the solution is to not use an iterator. Rather, use a collection like a Seq, or List. The sample program below illustrates the correct way to do what I was trying to do.
import org.apache.spark.{Partition, SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object AWorkingExample extends App {
val sparkConf = new SparkConf().setAppName("batman").setMaster("local[*]")
val sc = new SparkContext(sparkConf)
val parallel: RDD[Int] = sc.parallelize(1 to 9)
val parts: Array[Partition] = parallel.partitions
val partRDD: RDD[(Int, List[Int])] =
parallel.coalesce(3).
mapPartitionsWithIndex {
(partitionIndex: Int, inputiterator: Iterator[Int]) =>
val mappedInput: Iterator[Int] = inputiterator.map(_ + 1)
Iterator((partitionIndex, mappedInput.toList)) // Note the .toList() call -- that makes it work
}
val data = partRDD.collect
println("data:" + data.toList);
}
By the way, what I was trying to do originally was to see concretely which chunks of data from my parallelized-to-RDD structure were assigned to which partition. Here is the output you get if you run the program:
data:List((0,List(2, 3)), (1,List(4, 5, 6)), (2,List(7, 8, 9, 10)))
Interesting that the data distribution could have been more optimally balanced, but wasn't. That's not the point of the question, but I thought it was interesting.
I have list of org.apache.avro.generic.GenericRecord, avro schemausing this we need to create dataframe with the help of SQLContext API, to create dataframe it needs RDD of org.apache.spark.sql.Row and avro schema. Pre-requisite to create DF is we should have RDD of org.apache.spark.sql.Row and it can be achieved using below code but some how it is not working and giving error, sample code.
1. Convert GenericRecord to Row
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.avro.Schema
import org.apache.spark.sql.types.StructType
def convertGenericRecordToRow(genericRecords: Seq[GenericRecord], avroSchema: Schema, schemaType: StructType): Seq[Row] =
{
val fields = avroSchema.getFields
var rows = new Seq[Row]
for (avroRecord <- genericRecords) {
var avroFieldsSeq = Seq[Any]();
for (i <- 0 to fields.size - 1) {
avroFieldsSeq = avroFieldsSeq :+avroRecord.get(fields.get(i).name)
}
val avroFieldArr = avroFieldsSeq.toArray
val genericRow = new GenericRowWithSchema(avroFieldArr, schemaType)
rows = rows :+ genericRow
}
return rows;
}
2. Convert `Avro schema` to `Structtype`
Use `com.databricks.spark.avro.SchemaConverters -> toSqlType` function , it will convert avro schema to StructType
3. Create `Dataframe` using `SQLContext`
val rowSeq= convertGenericRecordToRow(genericRecords, avroSchema, schemaType)
val rowRdd = sc.parallelize(rowSeq, 1)
val finalDF =sqlContext.createDataFrame(rowRDD,structType)
But it is throwing an error at creation of DataFrame. Can someone please help me what is wrong in above code. Apart from this if someone has different logic for converting and creation of dataframe.
Whenever I will invoke any action on Dataframe, it will execute DAG and try to create DF object but in this it is failing with below exception as
ERROR TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
Error :Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, hdpoc-c01-r06-01, executor 1): java.io.InvalidClassException: org.apache.commons.lang3.time.FastDateFormat; local class incompatible: stream classdesc serialVersionUID = 2, local class serialVersionUID = 1
at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:617)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1622)
After this I am trying to give correct version jar in jar parameter of spark submit and with other parameter as --conf spark.driver.userClassPathFirst=true
but now it is failing with MapR as
ERROR CLDBRpcCommonUtils: Exception during init
java.lang.UnsatisfiedLinkError: com.mapr.security.JNISecurity.SetClusterOption(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)
at com.mapr.security.JNISecurity.SetClusterOption(Native Method)
at com.mapr.baseutils.cldbutils.CLDBRpcCommonUtils.init(CLDBRpcCommonUtils.java:163)
at com.mapr.baseutils.cldbutils.CLDBRpcCommonUtils.<init>(CLDBRpcCommonUtils.java:73)
at com.mapr.baseutils.cldbutils.CLDBRpcCommonUtils.<clinit>(CLDBRpcCommonUtils.java:63)
at org.apache.hadoop.conf.CoreDefaultProperties.<clinit>(CoreDefaultProperties.java:69)
at java.lang.Class.forName0(Native Method)
We are using MapR distribution and after class path change in spark-submit, it is failing with above exception.
Can someone please help here or my basic need it to convert Avro GenericRecord into Spark Row so i can create Dataframe with it, please help
Thanks.
Maybe this helps somebody coming a bit later to the game.
Since spark-avro is deprecated and now integrated in Spark, there is a different way this can be accomplished.
import org.apache.spark.sql.avro._
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.catalyst.encoders.RowEncoder
...
val avroSchema = data.head.getSchema
val sparkTypes = SchemaConverters.toSqlType(avroSchema).dataType.asInstanceOf[StructType]
val converter = new AvroDeserializer(avroSchema, sparkTypes)
val enconder = RowEncoder.apply(sparkTypes).resolveAndBind()
val rows = data.map { record =>
enconder.fromRow(converter.deserialize(record).asInstanceOf[InternalRow])
}
val df = sparkSession.sqlContext.createDataFrame(sparkSession.sparkContext.parallelize(rows), sparkTypes)
While creating dataframe from RDD[GenericRecord] there are few steps
First need to convert org.apache.avro.generic.GenericRecord into org.apache.spark.sql.Row
Use com.databricks.spark.avro.SchemaConverters.createConverterToSQL(
sourceAvroSchema: Schema,targetSqlType: DataType)
this is private method in spark-avro 3.2 version. If we are having same or less than 3.2 then copy this method into your own util class and use it else directly use it.
Create Dataframe from collection of Row (rowSeq).
val rdd = ssc.sparkContext.parallelize(rowSeq,numParition) val
dataframe = sparkSession.createDataFrame(rowRDD, schemaType)
This resolves my problem.
Hopefully this will help. In the first part you can find how convert from GenericRecord to Row
How to convert RDD[GenericRecord] to dataframe in scala?