multiple single object trackers does it give multiple object tracker - object

Can multiple single object trackers be used to get a multiple object tracker? if it is feasible, would it give a better performance than existing Multiple object trackers.

Answer to the first question: Yes. Answer to the second question: Yes & No.
You can use multiple single object trackers(MSOT) however, since they would be independent from each other, they may not be able to take advantage of certain things. On the other hand, multiple object trackers(MOT) explicitly make use of "all" known object positions simultaneously.
For example; in MSOT, two separate objects might be assigned same spatial position even though it's impossible because those two trackers don't communicate with each other. However, a MOT algorithm would make sure that at any given time only one object can occupy a certain spatial location.
To sum up: If you are sure that the objects would never occlude each other, using MSOT would work. However, if that assumption is not valid, then you need to go for MOT algorithms.

SOT tracks the object from the beginning of a video sequence where the object's position in the first frame is known to the tracker, however in MOT, objects may vanish or re-enter, and new objects may appear, which requires detection.
In MOT, the number of objects is not known to the tracker, so if you use MSOT, the computation cost would rise dramatically when the number goes up compared to MOT methods, which is not acceptable in some real and crowded scenes.

Related

How to properly render multiple 3D models in Direct3D11?

After some search I've learned it is possible to create multiple Vertex Buffers, each for a specific 3D model, and set them in the Input Assembler to be read by my shaders, or at least this is what I could understand. But by reading Microsoft's documentation I've got very confused of how to do this the right way, this is what I was reading, and they say I can pass in an array of Vertex Buffers to the IA stage, but it also says that the maximum number of Vertex Buffers my Input Assembler can take in D3D11 is 32. What would I do if I needed 50 different models being rendered at the same time? And also if someone could clarify how the pOffset work in this situation with multiple models would also help, as I could understand it should always be assigned a 0 value as the beginning of my buffers is always the vertex data, but I could've understood wrong. And by last I want to add I've already rendered some buffers which consists of multiple models together, but I don't know exactly how could I deal with many individual models.
The short answer is: You don't try to draw all your models in one Draw call.
You are free to organize rendering in many ways, but here is one approach:
A 'model' consists of a one or more 'meshes'. Each mesh is collection of a vertices (in a VB), indices (in an IB), and some material information associated with each 'subset' of indices.
To draw:
foreach M in models
foreach mesh in M
foreach part in mesh
Set shaders based on material
Set VB/IB based on mesh
DrawIndexed
Since this is a number of nested loops, there are several ways to improve the performance. For example, you might just queue up the information instead of actually calling DrawIndexed, then sort by material. Then call DrawIndexed from the sorted queue.
For alpha-blending to appear correct, you have to do at least two rendering passes: First to render opaque things, then the second to render alpha-blended things.
You may also want to combine all the content in a given model into one VB and one IB with offsets rather than use individual resources.
You may have the same model in multiple locations in the world, so you may have many model instances sharing the same mesh data. In this case, sorting by VB/IB as well as material could be useful. If you are drawing the same model in many locations (100s or 1000s), then you should to look into hardware instancing.
An example implementation of this can be found in DirectX Tool Kit as Model, ModelMesh, and ModelMeshPart.

VariesAcrossGroups lost when ReInsert_ing doc.ParameterBindings?

Our plugin maintains some instance parameter values across many elements, including those in groups.
Occasionally the end users will introduce data that activates an unused Category,
so we have to update the document parameter bindings, to include those categories. However, when we call
doc.ParameterBindings.ReInsert()
our existing parameter values inside groups are lost, because our VariesAcrossGroups flag is toggled back to false?
How did Revit intend this to work - are we supposed to use this in a different way, to not trigger this problem?
ReInsert() expects a base Definition argument, and would usualy get an ExternalDefinition supplied.
To learn, I instead tried to scan through the definition-keys of existing bindings and match those.
This way, I got the document's InternalDefinition, and tried calling Reinsert with that instead
(my hope was, that since its existing InternalDefinition DID include VariesAcrossGroups=true, this would help). Alas, Reinsert doesn't seem to care.
The problem, as you might guess, is that after VariesAcrossGroups=False, a lot of my instance parameters have collapsed into each other, so they all hold identical values. Given that they are IDs, this is less than ideal.
My current (intended) solution is to instead grab a backup of all existing parameter values BEFORE I update the bindings, then after the binding-update and variesAcrossGroups back to true, then inspect all values and re-assign all parameter-values that have been broken. But as you may surmise, this is less than ideal - it will be horribly slow for the users to use our plugin, and frankly it seems like something the revitAPI should take care of, not the plugin developer.
Are we using this the wrong way?
One approach I have considered, is to bind every possibly category I can think of, up front and once only. But I'm not sure that is possible. Categories in themselves are also difficult to work with, as you can only create them indirectly, by using your Project-Document as a factory (i.e. you cannot create a category yourself, you can only indirectly ask the Document to - maybe! - create a category for you, that you request). Because of this, I don't think you can bind for all categories up front - some categories only become available in the document, AFTER you have included a given family/type in your project.
To sum it up: First, I
doc.ParameterBindings.ReInsert()
my binding, with the updated categories. Then, I call
InternalDefinition.SetAllowVaryBetweenGroups()
(after having determined IDEF.VariesAcrossGroups has reverted back to false.)
I am interested to hear the best way to do this, without destroying the client's existing data.
Thank you very much in advance.
(I'm not sure I will accept my own answer).
My answer is just, that you can survive-circumvent this problem,
by scanning the entire revit database for your existing parmater values, before you update the document bindings.
Afterwards, you reset VariesAcrossGroups back to its lost value.
Then, you iterate through your collected parameters, and verify which ones have lost their original value, and reset them back to their intended value.
One trick that speeds this up a bit, is that you can check Element.GroupId <> -1. That is, those elements that are group members.
You only need to track elements which are group members, as it's precisely those that are affected by this Revit bug.
A further tip is, that you should not only watch out for parameter-values that have lost their original value. You must also watch out for parameter-values that have accidentally GOTTEN a value, but which should be left un-set.
I just use FilteredElementCollector with WhereElementIsNotElementType().
Performance-wise, it is of course horrible to do all this,
but given how Revit behaves, I see no other solution if you have to ship to your clients.

Why is it usually easier to perform selection tests in object space?

I'm taking an introductory graphics course, and while I intuitively understand that converting a click or touch into object coordinates will make the math much cleaner, reduce the chances for human error, and potentially make debugging easier, none of these are actually a very good explanation, conceptually, of why object coordinate spaces are used in selection tests, as opposed to simply using world coordinates for the test - rather, they're just observations of what tends to happen when object coordinates are used. So I ask: why?
A selection test involves comparing the click coordinates, which you get in window coordinates, against lots and lots of object features, which are represented in object coordinates.
You need to transform them into the same coordinate system in order to do the checks, so you can EITHER transform the one simple click point OR you can transform all the various object features.
Transforming one point or line is just a lot easier that transforming a whole bunch of object features of various types.
There are cases where the location of a specific object or point may not be known within a world coordinate system, but is known relative to some other coordinate system.
To summarize an example from my course text, consider the idea of two different towns, one using a grid system for its layout, and the other using what I can only describe as the New England we-made-cow-trails-into-roads method. A government employee is tasked with creating a layout of the area which includes them, and in doing so has to convert the two coordinate systems into a third, which encompasses the other two.
Sometimes, using a world atlas just isn't practical to get across the street, and so something much more local (and relevant) is used instead, as it provides much more detail over a much smaller area.
The text also explains that it may be more than simply impractical to use a given coordinate system - it may yield results that are improbable or just plain wrong. This is evidenced in the evolution of the geocentric and heliocentric models of the universe - the distance of the stars from us was calculated with very different results using the two models.
Thinking of my own example, the best that comes to mind would be something like your own internal organs - from the outside, you don't know for sure exactly the shape, size, and structure of each of them, but your own body does. In order to be able to access that information, you need to look inside the body (ideally in a way that doesn't kill you). It's not something that is plainly observable from outside.

Should I implement matrix transformations over changing object coordinates?

I have a set of objects that can be scaled and translated.
Suppose the user selects an object and drag to some position.
I was thinking about implementing this in two different ways: either changing the coordinates of the objects given the mouse position, or changing the transformation matrix.
Is one of these implementations better than the other?
My main issues are:
Performance
Code organization
Scalability
Objects have certain coordinates, and the way you look at objects has a certain frame of reference. I think it is better not to mess with your coordinates, and instead to change just the matrix that takes you from "the object is here" to "I draw the object here". It is much cleaner. Performance wise you have to apply a transformation to each object being rendered, so you may as well do it just once. From. Code organization perspective it is better to keep things "relating to something physical"; and from a scalability perspective, not applying a transformation to all objects every time the user changes the view is clearly preferable - you only apply the transformation to objects when you render them, so if you can't keep up you skip a step; if you didn't rescale some of your objects during each step you would quickly get into trouble. Finally, applying multiple transformations to the same object would tend to accumulate errors.
Stream of conscience, but clear preference, I think!

Message Passing Arbitrary Object Graphs?

I'm looking to parallelize some code across a Beowulf cluster, such that the CPUs involved don't share address space. I want to parallelize a function call in the outer loop. The function calls do not have any "important" side effects (though they do use a random number generator, allocate memory, etc.).
I've looked at libs like MPI and the problem I see is that they seem to make it very non-trivial to pass complex object graphs between nodes. The input to my function is a this pointer that points to a very complex object graph. The return type of my function is another complex object graph.
At a language-agnostic level (I'm working in the D programming language, and I'm almost sure no canned solution is available here, but I'm willing to create one), is there a "typical" way that passing complex state across nodes is dealt with? Ideally, I want the details of how the state is copied to be completely abstracted away and for the calls to look almost like normal function calls. I don't care that copying this much state over a network isn't particularly efficient, as the level of parallelism in question is so coarse-grained that it probably won't matter.
Edit: If there is no easy way to pass complex state, then how is message passing typically used? It seems to me like anything involving copying data over a network requires coarse grained parallelism, yet coarse grained parallelism usually requires passing complex state so that a lot of work can be done in one work unit.
I do a fair bit of MPI programming but I don't know of any typical way of passing complex state (as you describe it) between processes. Here's how I've been thinking about your problem, it probably matches your own thinking ...
I surmise that your complex object graphs are represented, in memory, by blocks of data and pointers to other blocks of data -- a usual sort of implementation of a graph. How best can you move one of these COGs (to coin an abbreviation) from the address space of one process to the address space of another ? To the extent that a pointer is a memory address, a pointer in one address space is no use in another address space, so you will have to translate it into some neutral form for transport (I think ?).
To send a COG, therefore, it has to be put into some form from which the receiving process can build, in its own address space, a local version of the graph with the pointers pointing to local memory addresses. Do you ever write these COGs to file ? If so, you already have a form in which one could be transported. I hate to suggest it, but you could even use files to communicate between processes -- and that might be easier to handle than the combination of D and MPI. Your choice !
If you don't have a file form for the COGs can you easily represent them as adjacency matrices or lists ? In other words, work out your own representation for transport ?
I'll be very surprised (but pleased to learn) if you can pass a COG between processes without transforming it from pointer-based to some more static structure such as arrays or records.
Edit, in response to OP's edit. MPI does provide easy ways to pass complex state around, provided that the complex state is represented as values not pointers. You can pass complex state around in either the intrinsic or customised MPI datatypes; as one of the other answers shows you these are flexible and capable. If our program does not keep the complex state in a form that MPI custom datatypes can handle, you'll have to write functions to pack/unpack to a message-friendly representation. If you can do that, then your message calls will look (for most purposes) like function calls.
As to the issues surrounding complex state and the graininess of parallelism, I'm not sure I quite follow you. We (include yourself in this sweeping generalisation if you want, or not) typically resort to MPI programming because we can't get enough performance out of a single processor, we know that we'll pay a penalty in terms of computation delayed by waiting for communication, we work hard to minimise that penalty, but in the end we accept the penalty as the cost of parallelisation. Certainly some jobs are too small or too short to benefit from parallelisation, but a lot of what we (parallel computationalists that is) do is just too big and too long-running to avoid parallelisation
You can do marvelous things with custom MPI datatypes. I'm currently working on a project where several MPI processes are tracking particles in a piece of virtual space, and when particles cross over from one process' territory into another one's, their data (position/speed/size/etc) has to be sent over the network.
The way I achieved this is the following:
1) All processes share an MPI Struct datatype for a single particle that contains all its relevant attributes, and their displacement in memory compared to the base address of the particle object.
2) On sending, the process iterates over whatever data structure it stores the particles in, notes down the memory address of each one that needs to be sent, and then builds a Hindexed datatype where each block is 1 long (of the above mentioned particle datatype) and starts at the memory addresses previously noted down. Sending 1 object of the resulting type will send all the necessary data over the network, in a type safe manner.
3) On the receiving end, things are slightly trickier. The receiving process first inserts "blank" particles into its own data structure: "blank" means that all the attributes that will be received from the other process are initialized to some default value. The memory addresses of the freshly inserted particles are noted down, and a datatype similar to that of the sender is created from these addresses. Receiving the sender's message as a single object of this type will automatically unpack all the data into all the right places, again, in a type safe manner.
This example is simpler in the sense that there are no relationships between particles (as there would be between nodes of a graph), but you could transmit that data in a similar way.
If the above description is not clear, I can post the C++ code that implements it.
I'm not sure I understand the question correctly so forgive me if my answer is off. From what I understand you want to send non-POD datatypes using MPI.
A library that can do this is Boost.MPI. It uses a serialization library to send even very complex data structures. There is a catch though: you will have to provide code to serialize the data yourself if you use complicated structures that Boost.Serialize does not already know about.
I believe message passing is typically used to transmit POD datatypes.
I'm not allowed to post more links so here is what I wanted to include:
Explanation of POD: www.fnal.gov/docs/working-groups/fpcltf/Pkg/ISOcxx/doc/POD.html
Serialization Library: www.boost.org/libs/serialization/doc
it depends on organization of your data. If you use pointers or automatic memory inside your objects, it will be difficult. If you can organize your objects to be contiguous in memory, you have two choices: send memory as bytes,cast it back to object type on the receiver or define mpi derived type for your object. If however you use inheritance, things will become complicated due to how objects are laid out in memory.
I do not know your problem, but maybe can take a look at ARMCI if you manage memory manually.

Resources