Making a histogram/barchart - python-3.x

i have a Pandas dataframe, which contains 6000 values ranging between 1 and 2500, i would like to create a chart that shows a predetermined x-axis, i.e. [1,2,4,8,16,32,64,128,256,512,more] and the a bar for each of these counts, i've been looking into the numpy.histogram, bit that does not let me choose the bin range (it estimates one) same goes for matplotlib.
The codes i've tried so far is,
plt.hist(df['cnt'],bins=[0,1,2,4,8,16,32,64,128,256,512])
plt.show()
np.histogram(df['cnt'])
And the plotting the np data, but i does not look like i want it.
I hope my question makes sense, else i will try to expand.
EDIT
when i run the
plt.hist(df['cnt'],bins=[0,1,2,4,8,16,32,64,128,256,512])
plt.show()
i get:
What i want:
Where the second one have been made in Excel using the data analysis histogram function. I hope this gives a better picture of what i would like to do.

I think you want a base-2 logarithmic scale on the xaxis.
You can do that by setting ax.set_xscale('log', basex=2)
You also then need to adjust the tick locations and formatting, which you can do with ax.xaxis.set_major_locator(ticker.FixedLocator(bins)) and ax.xaxis.set_major_formatter(ticker.ScalarFormatter()
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
fig, ax = plt.subplots(1)
# Some fake data
cnt = np.random.lognormal(0.5, 2.0, 6000)
# Define your bins
bins = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
# Plot the histogram
ax.hist(cnt, bins=bins)
# Set scale to base2 log
ax.set_xscale('log', basex=2)
# Set ticks and ticklabels using ticker
ax.xaxis.set_major_locator(ticker.FixedLocator(bins))
ax.xaxis.set_major_formatter(ticker.ScalarFormatter())
plt.show()

Related

How to plot a histogram with plot.hist for continous data in a dataframe in pandas?

In this data set I need to plot,pH as the x-column which is having continuous data and need to group it together the pH axis as per the quality value and plot the histogram. In many of the resources I referred I found solutions for using random data generated. I tried this piece of code.
plt.hist(, density=True, bins=1)
plt.ylabel('quality')
plt.xlabel('pH');
Where I eliminated the random generated data, but I received and error
File "<ipython-input-16-9afc718b5558>", line 1
plt.hist(, density=True, bins=1)
^
SyntaxError: invalid syntax
What is the proper way to plot my data?I want to feed into the histogram not randomly generated data, but data found in the data set.
Your Error
The immediate problem in your code is the missing data to the plt.hist() command.
plt.hist(, density=True, bins=1)
should be something like:
plt.hist(data_table['pH'], density=True, bins=1)
Seaborn histplot
But this doesn't get the plot broken down by quality. The answer by Mr.T looks correct, but I'd also suggest seaborn which works with "melted" data like you have. The histplot command should give you what you want:
import seaborn as sns
sns.histplot(data=df, x="pH", hue="quality", palette="Dark2", element='step')
Assuming the table you posted is in a pandas.DataFrame named df with columns "pH" and "quality", you get something like:
The palette (Dark2) can can be any matplotlib colormap.
Subplots
If the overlaid histograms are too hard to see, an option is to do facets or small multiples. To do this with pandas and matplotlib:
# group dataframe by quality values
data_by_qual = df.groupby('quality')
# create a sub plot for each quality group
fig, axes = plt.subplots(nrows=len(data_by_qual),
figsize=[6,12],
sharex=True)
fig.subplots_adjust(hspace=.5)
# loop over axes and quality groups together
for ax, (quality, qual_data) in zip(axes, data_by_qual):
ax.hist(qual_data['pH'], bins=10)
ax.set_title(f"quality = {quality}")
ax.set_xlabel('pH')
Altair Facets
The plotting library altair can do this for you:
import altair as alt
alt.Chart(df).mark_bar().encode(
alt.X("pH:Q", bin=True),
y='count()',
).facet(row='quality')
Several possibilities here to represent multiple histograms. All have in common that the data have to be transformed from long to wide format - meaning, each category is in its own column:
import matplotlib.pyplot as plt
import pandas as pd
#test data generation
import numpy as np
np.random.seed(123)
n=300
df = pd.DataFrame({"A": np.random.randint(1, 100, n), "pH": 3*np.random.rand(n), "quality": np.random.choice([3, 4, 5, 6], n)})
df.pH += df.quality
#instead of this block you have to read here your stored data, e.g.,
#df = pd.read_csv("my_data_file.csv")
#check that it read the correct data
#print(df.dtypes)
#print(df.head(10))
#bringing the columns in the required wide format
plot_df = df.pivot(columns="quality")["pH"]
bin_nr=5
#creating three subplots for different ways to present the same histograms
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(6, 12))
ax1.hist(plot_df, bins=bin_nr, density=True, histtype="bar", label=plot_df.columns)
ax1.legend()
ax1.set_title("Basically bar graphs")
plot_df.plot.hist(stacked=True, bins=bin_nr, density=True, ax=ax2)
ax2.set_title("Stacked histograms")
plot_df.plot.hist(alpha=0.5, bins=bin_nr, density=True, ax=ax3)
ax3.set_title("Overlay histograms")
plt.show()
Sample output:
It is not clear, though, what you intended to do with just one bin and why your y-axis was labeled "quality" when this axis represents the frequency in a histogram.

How to align twin-axis of datetimes over invisible original axis of floats/ints in imshow?

I would like to show datetimes as ticklabels on the x-axis of a plot via ax.imshow(). I first tried putting the limits (as datetime objects) into extent, but it appears that extent only accepts arguments of type <float/int>. So instead, I would like to create the original plot via ax.imshow(...), then make the x-axis invisible, then add in the correct xticks and xlim.
I found a similar problem solved using a different approach in this example, but I think my use-case is slightly different; I don't need to convert any time-stamps, but I do know the xlim of the data (in terms of datetime objects). Also, I do not think the suggested use of matplotlib.dates.date2num fits my use-case since some of the data is spaced less than one day apart, but date2num uses days as a base-unit.
I am stuck trying to make this work using my alternate approach; a simple mini-example is below.
import numpy as np
import datetime
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
def f(x, y):
return np.sqrt(np.square(x) + np.square(y))
## SAMPLE DATA
x = np.arange(10) ## elapsed minutes
y = np.square(x) ## arbitrary y-values
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
## DATETIMES FOR ALTERNATE AXIS
lower_dt = datetime.datetime(1999, 1, 1, 0, 0, 0)
# upper_dt = datetime.datetime(2001, 10, 31, 0, 0, 0)
upper_dt = datetime.datetime(1999, 1, 1, x.size-1, 0, 0)
## DO PLOT
fig, ax = plt.subplots()
ax.xaxis.set_visible(False)
# ax.xaxis.tick_top()
ax.imshow(
Z,
origin='lower',
cmap='Oranges',
norm=Normalize(vmin=np.nanmin(Z), vmax=np.nanmax(X)),
extent=(x[0], x[-1], y[0], y[-1]))
## CONVERT XTICKLABELS OF X-AXIS TO DATETIME
mirror_ax = ax.twiny()
# mirror_ax = ax.figure.add_subplot(ax.get_subplotspec(), frameon=False)
mirror_ax.set_xlim([lower_dt, upper_dt])
plt.show()
plt.close(fig)
The obtained plot can be seen here:
I notice that the xticks are shown at the top instead of the bottom of the plot - this is unwanted behavior; using ax.tick_top (commented out above) does not change this. Even worse, the x-axis limits are not retained. I realize I could manually change the xticklabels via ax.get_xticks() and ax.set_xticklabels(...), but I would prefer to leave that for date-formatters and date-locators via matplotlib.
How can I use the approach outlined above to create a "mirror/alternate" x-axis of datetime units such that this x-axis is the same size/orientation of the "original/invisible" x-axis of float/integer units?

Plot several boxplots in one figure

I am using python-3.x and I would like to plot several boxplots in one figure, all the data from one numpy array where the shape of this array is (100, 301)
If I use the code below it will plot them all (I will have 301 boxplots in one figure which is too much)
fig, ax = plt.subplots()
ax.boxplot(my_data)
plt.show()
I don't want to plot all the data, I just want to plot 10, 15 or 20 (variable number) of the data by using for loop or any method that work best.
for example, I want to plot boxplots every 50 number of data that mean I will have around 6 boxplots from 301 in my figure, I tried to use for loop but no luck
Any advice would be much appreciated
You can just use indexing to plot every 50th data points using a variable step. To have separate box plots and avoid overlapping, you can specify the positions of individual box plot using the positions parameter. my_data[:, ::step] gives you the desired data to plot. Below is an example using some random data.
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
my_data = np.random.randint(0, 20, (100, 301))
step = 50
posit = range(my_data[:, ::step].shape[1])
ax.boxplot(my_data[:, ::step], positions=posit)
plt.show()

Seaborn barplot with two y-axis

considering the following pandas DataFrame:
labels values_a values_b values_x values_y
0 date1 1 3 150 170
1 date2 2 6 200 180
It is easy to plot this with Seaborn (see example code below). However, due to the big difference between values_a/values_b and values_x/values_y, the bars for values_a and values_b are not easily visible (actually, the dataset given above is just a sample and in my real dataset the difference is even bigger). Therefore, I would like to use two y-axis, i.e., one y-axis for values_a/values_b and one for values_x/values_y. I tried to use plt.twinx() to get a second axis but unfortunately, the plot shows only two bars for values_x and values_y, even though there are at least two y-axis with the right scaling. :) Do you have an idea how to fix that and get four bars for each label whereas the values_a/values_b bars relate to the left y-axis and the values_x/values_y bars relate to the right y-axis?
Thanks in advance!
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
columns = ["labels", "values_a", "values_b", "values_x", "values_y"]
test_data = pd.DataFrame.from_records([("date1", 1, 3, 150, 170),\
("date2", 2, 6, 200, 180)],\
columns=columns)
# working example but with unreadable values_a and values_b
test_data_melted = pd.melt(test_data, id_vars=columns[0],\
var_name="source", value_name="value_numbers")
g = sns.barplot(x=columns[0], y="value_numbers", hue="source",\
data=test_data_melted)
plt.show()
# values_a and values_b are not displayed
values1_melted = pd.melt(test_data, id_vars=columns[0],\
value_vars=["values_a", "values_b"],\
var_name="source1", value_name="value_numbers1")
values2_melted = pd.melt(test_data, id_vars=columns[0],\
value_vars=["values_x", "values_y"],\
var_name="source2", value_name="value_numbers2")
g1 = sns.barplot(x=columns[0], y="value_numbers1", hue="source1",\
data=values1_melted)
ax2 = plt.twinx()
g2 = sns.barplot(x=columns[0], y="value_numbers2", hue="source2",\
data=values2_melted, ax=ax2)
plt.show()
This is probably best suited for multiple sub-plots, but if you are truly set on a single plot, you can scale the data before plotting, create another axis and then modify the tick values.
Sample Data
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
columns = ["labels", "values_a", "values_b", "values_x", "values_y"]
test_data = pd.DataFrame.from_records([("date1", 1, 3, 150, 170),\
("date2", 2, 6, 200, 180)],\
columns=columns)
test_data_melted = pd.melt(test_data, id_vars=columns[0],\
var_name="source", value_name="value_numbers")
Code:
# Scale the data, just a simple example of how you might determine the scaling
mask = test_data_melted.source.isin(['values_a', 'values_b'])
scale = int(test_data_melted[~mask].value_numbers.mean()
/test_data_melted[mask].value_numbers.mean())
test_data_melted.loc[mask, 'value_numbers'] = test_data_melted.loc[mask, 'value_numbers']*scale
# Plot
fig, ax1 = plt.subplots()
g = sns.barplot(x=columns[0], y="value_numbers", hue="source",\
data=test_data_melted, ax=ax1)
# Create a second y-axis with the scaled ticks
ax1.set_ylabel('X and Y')
ax2 = ax1.twinx()
# Ensure ticks occur at the same positions, then modify labels
ax2.set_ylim(ax1.get_ylim())
ax2.set_yticklabels(np.round(ax1.get_yticks()/scale,1))
ax2.set_ylabel('A and B')
plt.show()

Second y-axis and overlapping labeling?

I am using python for a simple time-series analysis of calory intake. I am plotting the time series and the rolling mean/std over time. It looks like this:
Here is how I do it:
## packages & libraries
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from pandas import Series, DataFrame, Panel
## import data and set time series structure
data = pd.read_csv('time_series_calories.csv', parse_dates={'dates': ['year','month','day']}, index_col=0)
## check ts for stationarity
from statsmodels.tsa.stattools import adfuller
def test_stationarity(timeseries):
#Determing rolling statistics
rolmean = pd.rolling_mean(timeseries, window=14)
rolstd = pd.rolling_std(timeseries, window=14)
#Plot rolling statistics:
orig = plt.plot(timeseries, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show()
The plot doesn't look good - since the rolling std distorts the scale of variation and the x-axis labelling is screwed up. I have two question: (1) How can I plot the rolling std on a secony y-axis? (2) How can I fix the x-axis overlapping labeling?
EDIT
With your help I managed to get the following:
But do I get the legend sorted out?
1) Making a second (twin) axis can be done with ax2 = ax1.twinx(), see here for an example. Is this what you needed?
2) I believe there are several old answers to this question, i.e. here, here and here. According to the links provided, the easiest way is probably to use either plt.xticks(rotation=70) or plt.setp( ax.xaxis.get_majorticklabels(), rotation=70 ) or fig.autofmt_xdate().
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5])
plt.xticks(rotation=70) # Either this
ax.set_xticks([1, 2, 3, 4, 5])
ax.set_xticklabels(['aaaaaaaaaaaaaaaa','bbbbbbbbbbbbbbbbbb','cccccccccccccccccc','ddddddddddddddddddd','eeeeeeeeeeeeeeeeee'])
# fig.autofmt_xdate() # or this
# plt.setp( ax.xaxis.get_majorticklabels(), rotation=70 ) # or this works
fig.tight_layout()
plt.show()
Answer to Edit
When sharing lines between different axes into one legend is to create some fake-plots into the axis you want to have the legend as:
ax1.plot(something, 'r--') # one plot into ax1
ax2.plot(something else, 'gx') # another into ax2
# create two empty plots into ax1
ax1.plot([][], 'r--', label='Line 1 from ax1') # empty fake-plot with same lines/markers as first line you want to put in legend
ax1.plot([][], 'gx', label='Line 2 from ax2') # empty fake-plot as line 2
ax1.legend()
In my silly example it is probably better to label the original plot in ax1, but I hope you get the idea. The important thing is to create the "legend-plots" with the same line and marker settings as the original plots. Note that the fake-plots will not be plotted since there is no data to plot.

Resources