Monadic "double-bind" [duplicate] - haskell

The Typeclassopedia's Monad Transformers section explains:
Unfortunately, monads do not compose as nicely as applicative functors (yet another reason to use Applicative if you don’t need the full power that Monad provides)
Looking at the types of >>= and <*>, the above statement is not clear to me.
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(>>=) :: Monad m => m a -> (a -> m b) -> m b
Please explain the "monads do not compose as nicely as applicative functors."
I read this answer, but could you please give an example to help me understand?

There are several notions by which types of kind * -> * might "compose". The more important one is you can compose them "sequentially".
newtype Compose f g x = Compose { getCompose :: f (g x) }
Here you can see that Compose has kind (* -> *) -> (* -> *) -> (* -> *) much like any good composition of functors ought to.
So the question is: are there law-abiding instances like the following?
instance (Applicative f, Applicative g) => Applicative (Compose f g)
instance (Monad f, Monad g) => Monad (Compose f g)
And the short answer as to why monads don't compose as well as applicatives is that while the first instance can be written the second cannot. Let's try!
We can warm up with Functor
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose fgx) = Compose (fmap (fmap f) fgx)
Here we see that because we can fmap an fmap-ed f we can pass it through the layers f and g like we need to. A similar game is played with pure
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure a = Compose (pure (pure a))
and while (<*>) appears tricky, if you look carefully it's the exact same trick we used with both fmap and pure.
Compose fgf <*> Compose fgx = Compose ((<*>) <$> fgf <*> fgx)
In all cases, we can push the operators we need "through" the layers of f and g exactly as we might hope.
But now let's take a look at Monad. Instead of trying to define Monad via (>>=), I'm going to instead work via join. To implement Monad we need to implement
join :: Compose f g (Compose f g x) -> Compose f g x
using
join_f :: f (f x) -> f x -- and
join_g :: g (g x) -> g x
or, if we strip off the newtype noise, we need
join :: f (g (f (g x))) -> f (g x)
At this point it might be clear what the problem is---we only know how to join consecutive layers of fs or gs, but here we see them interwoven. What you'll find is that we need a commutativity property
class Commute f g where
commute :: g (f x) -> f (g x)
and now we can implement
instance (Monad f, Monad g, Commute f g) => Monad (Compose f g)
with (the newtype agnostic) join defined as
join :: f (g (f (g x))) -> f (g x)
join fgfgx = fgx where
ffggx :: f (f (g (g x)))
ffggx = fmap commute fgfgx
fggx :: f (g (g x))
fggx = join_f ffggx
fgx :: f (g x)
fgx = fmap join_g fggx
So what's the upshot of all this? Applicatives always Compose, but Monads Compose only when their layers Commute.
When can we commute layers? Here are some examples
instance Commute ((->) x) ((->) y) where
commute = flip
instance Commute ((,) x) ((,) y) where
commute (y, (x, a)) = (x, (y, a))
instance Commute ((->) x) ((,) y) where
commute (y, xa) = \x -> (y, xa x)
-- instance Commute ((,) x) ((->) y) does not exist; try to write yourself!
--
-- OR:
-- It turns out that you need to somehow "travel back in time" to make it
-- work...
--
-- instance Commute ((,) x) ((->) y) where
-- commute yxa = ( ..., \y -> let (x, a) = yxa y in a )

Related

Composing Applicatives

I'm reading through Chapter 25 (Composing Types) of the haskellbook, and wish to understand applicative composition more completely
The author provides a type to embody type composition:
newtype Compose f g a =
Compose { getCompose :: f (g a) }
deriving (Eq, Show)
and supplies the functor instance for this type:
instance (Functor f, Functor g) =>
Functor (Compose f g) where
fmap f (Compose fga) =
Compose $ (fmap . fmap) f fga
But the Applicative instance is left as an exercise to the reader:
instance (Applicative f, Applicative g) =>
Applicative (Compose f g) where
-- pure :: a -> Compose f g a
pure = Compose . pure . pure
-- (<*>) :: Compose f g (a -> b)
-- -> Compose f g a
-- -> Compose f g b
Compose fgf <*> Compose fgx = undefined
I can cheat and look the answer up online... The source for Data.Functor.Compose provides the applicative instance definition:
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
but I'm having trouble understanding what's going on here. According to type signatures, both f and x are wrapped up in two layers of applicative structure. The road block I seem to be hitting though is understanding what's going on with this bit: (<*>) <$> f. I will probably have follow up questions, but they probably depend on how that expression is evaluated. Is it saying "fmap <*> over f" or "apply <$> to f"?
Please help to arrive at an intuitive understanding of what's happening here.
Thanks! :)
Consider the expression a <$> b <*> c. It means take the function a, and map it over the functor b, which will yield a new functor, and then map that new functor over the functor c.
First, imagine that a is (\x y -> x + y), b is Just 3, and c is Just 5. a <$> b then evaluates to Just (\y -> 3 + y), and a <$> b <*> c then evaluates to Just 8.
(If what's before here doesn't make sense, then you should try to understand single layers of applicatives further before you try to understand multiple layers of them.)
Similarly, in your case, a is (<*>), b is f, and c is x. If you were to choose suitable values for f and x, you'd see that they can be easily evaluated as well (though be sure to keep your layers distinct; the (<*>) in your case belongs to the inner Applicative, whereas the <$> and <*> belong to the outer one).
Rather than <*>, you can define liftA2.
import Control.Applicative (Applicative (..))
newtype Compose f g a = Compose
{ getCompose :: f (g a) }
deriving Functor
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure a = Compose (pure (pure a))
-- liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c
liftA2 f (Compose fga) (Compose fgb) = Compose _1
We have fga :: f (g a) and fgb :: f (g b) and we need _1 :: f (g c). Since f is applicative, we can combine those two values using liftA2:
liftA2 f (Compose fga) (Compose fgb) = Compose (liftA2 _2 fga fgb)
Now we need
_2 :: g a -> g b -> g c
Since g is also applicative, we can use its liftA2 as well:
liftA2 f (Compose fga) (Compose fgb) = Compose (liftA2 (liftA2 f) fga fgb)
This pattern of lifting liftA2 applications is useful for other things too. Generally speaking,
liftA2 . liftA2 :: (Applicative f, Applicative g) => (a -> b -> c) -> f (g a) -> f (g b) -> f (g c)
liftA2 . liftA2 . liftA2
:: (Applicative f, Applicative g, Applicative h)
=> (a -> b -> c) -> f (g (h a)) -> f (g (h b)) -> f (g (h c))

Composing Monads v. Applicative Functors

The Typeclassopedia's Monad Transformers section explains:
Unfortunately, monads do not compose as nicely as applicative functors (yet another reason to use Applicative if you don’t need the full power that Monad provides)
Looking at the types of >>= and <*>, the above statement is not clear to me.
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(>>=) :: Monad m => m a -> (a -> m b) -> m b
Please explain the "monads do not compose as nicely as applicative functors."
I read this answer, but could you please give an example to help me understand?
There are several notions by which types of kind * -> * might "compose". The more important one is you can compose them "sequentially".
newtype Compose f g x = Compose { getCompose :: f (g x) }
Here you can see that Compose has kind (* -> *) -> (* -> *) -> (* -> *) much like any good composition of functors ought to.
So the question is: are there law-abiding instances like the following?
instance (Applicative f, Applicative g) => Applicative (Compose f g)
instance (Monad f, Monad g) => Monad (Compose f g)
And the short answer as to why monads don't compose as well as applicatives is that while the first instance can be written the second cannot. Let's try!
We can warm up with Functor
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose fgx) = Compose (fmap (fmap f) fgx)
Here we see that because we can fmap an fmap-ed f we can pass it through the layers f and g like we need to. A similar game is played with pure
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure a = Compose (pure (pure a))
and while (<*>) appears tricky, if you look carefully it's the exact same trick we used with both fmap and pure.
Compose fgf <*> Compose fgx = Compose ((<*>) <$> fgf <*> fgx)
In all cases, we can push the operators we need "through" the layers of f and g exactly as we might hope.
But now let's take a look at Monad. Instead of trying to define Monad via (>>=), I'm going to instead work via join. To implement Monad we need to implement
join :: Compose f g (Compose f g x) -> Compose f g x
using
join_f :: f (f x) -> f x -- and
join_g :: g (g x) -> g x
or, if we strip off the newtype noise, we need
join :: f (g (f (g x))) -> f (g x)
At this point it might be clear what the problem is---we only know how to join consecutive layers of fs or gs, but here we see them interwoven. What you'll find is that we need a commutativity property
class Commute f g where
commute :: g (f x) -> f (g x)
and now we can implement
instance (Monad f, Monad g, Commute f g) => Monad (Compose f g)
with (the newtype agnostic) join defined as
join :: f (g (f (g x))) -> f (g x)
join fgfgx = fgx where
ffggx :: f (f (g (g x)))
ffggx = fmap commute fgfgx
fggx :: f (g (g x))
fggx = join_f ffggx
fgx :: f (g x)
fgx = fmap join_g fggx
So what's the upshot of all this? Applicatives always Compose, but Monads Compose only when their layers Commute.
When can we commute layers? Here are some examples
instance Commute ((->) x) ((->) y) where
commute = flip
instance Commute ((,) x) ((,) y) where
commute (y, (x, a)) = (x, (y, a))
instance Commute ((->) x) ((,) y) where
commute (y, xa) = \x -> (y, xa x)
-- instance Commute ((,) x) ((->) y) does not exist; try to write yourself!
--
-- OR:
-- It turns out that you need to somehow "travel back in time" to make it
-- work...
--
-- instance Commute ((,) x) ((->) y) where
-- commute yxa = ( ..., \y -> let (x, a) = yxa y in a )

Universal Quantification in Haskell Instance Contexts?

Original Question
I would like to make the following work:
class Functor2 c where
fmap2 :: (a->b) -> c x a -> c x b
instance Functor (c x) => Functor2 c where
fmap2 = fmap
However I get the error:
Could not deduce (Functor (c x1)) arising from a use of `fmap'
from the context (Functor (c x))
How can I do it?
My use case
I want to use the Arrow methods (and sugar, etc) for my Applicative instances. More specifically I want:
newtype Wrap f g a b = W { unwrap :: ( f (g a b) ) }
instance (Category g, "Forall x." Applicative (g x), Applicative f) => Arrow (Wrap f g)
This instance would automatically follow from these (already working) instances:
instance (Category g, Applicative f) => Category (Wrap f g) where
id = W $ pure id
(W x) . (W y) = W $ liftA2 (.) x y
instance (Applicative (g x), Applicative f) => Functor (Wrap f g x) where
fmap f = W . fmap (fmap f) . unwrap
instance (Applicative (g x), Applicative f) => Applicative (Wrap f g x) where
pure = W . pure . pure
(W ab) <*> (W a) = W $ pure (<*>) <*> ab <*> a
if I could get this one to work:
instance (Category c, "Forall x." Applicative (c x)) => Arrow c where
arr f = (pure f) <*> id
first a = pure (,) <*> (arr fst >>> a) <*> (arr snd)
The types of arr and first check out in the compiler. The problem is the required "Forall x.", which I do not know how to state in Haskell.
An easy example for such a g is ->: Category (->) and Applicative ((->) x) for all x.
This does not really achieve your goal, but maybe it could be a step forward.
Your forall x. Functor (c x) is written AllFunctor2 c in this approach.
The main drawback is that you have to provide an instance to every functor you want to put in that class.
{-# LANGUAGE GADTs, ScopedTypeVariables #-}
data Ftor f where
Ftor :: Functor f => Ftor f
class AllFunctor2 c where
allFtor2 :: Ftor (c a)
instance AllFunctor2 (->) where
allFtor2 = Ftor
fmap2 :: AllFunctor2 c => (a->b) -> c x a -> c x b
fmap2 f (x :: c x a) = case allFtor2 :: Ftor (c x) of Ftor -> fmap f x
Probably the above is not so different from providing instances to Functor2 directly:
class Functor2 c where
fmap2 :: (a->b) -> c x a -> c x b
instance Functor2 (->) where
fmap2 = fmap

Why can't I generalize this from Monad to Applicative?

I generalized hoistFree from the free package to hoistFreeM, similarly to how one can generalize fmap to Data.Traversable.mapM.
import Control.Monad
import Control.Monad.Free
import Data.Traversable as T
hoistFreeM :: (Traversable g, Monad m) =>
(forall a. f a -> m (g a)) -> Free f b -> m (Free g b)
hoistFreeM f = go
where go (Pure x) = return $ Pure x
go (Free xs) = liftM Free $ T.mapM go =<< f xs
However, I don't think there is a way to further generalize it to work with any Applicative, similarly to how one can generalize Data.Traversable.mapM to Data.Traversable.traverse. Am I correct? If so, why?
You can't lift an Applicative through a Free Monad because the Monad structure demands choice (via (>>=) or join) and the Applicative can't provide that. But, perhaps unsurprisingly, you can lift an Applicative through a Free Applicative
-- also from the `free` package
data Ap f a where
Pure :: a -> Ap f a
Ap :: f a -> Ap f (a -> b) -> Ap f b
hoistAp :: (forall a. f a -> g a) -> Ap f b -> Ap g b
hoistAp _ (Pure a) = Pure a
hoistAp f (Ap x y) = Ap (f x) (hoistAp f y)
hoistApA :: Applicative v => (forall a. f a -> v (g a)) -> Ap f b -> v (Ap g b)
hoistApA _ (Pure a) = pure (Pure a)
hoistApA f (Ap x y) = Ap <$> f x <*> hoistApA f y
-- just what you'd expect, really
To be more explicit, let's try generalizing hoistFreeM to hoistFreeA. It's easy enough to begin
hoistFreeA :: (Traversable f, Applicative v) =>
(forall a. f a -> v (g a)) -> Free f b -> v (Free g b)
hoistFreeA _ (Pure a) = pure (Pure a)
And we can try to continue by analogy from hoistFreeM here. mapM becomes traverse and we can get as far as
hoistFreeA f (Free xs) = ?f $ traverse (hoistFreeA f) xs
where I've been using ?f as a makeshift type hole to try to figure out how to move forward. We can complete this definition if we can make
?f :: v (f (Free g b)) -> v (Free g b)
In other words, we need to transform that f layer into a g layer while living underneath our v layer. It's easy enough to get underneath v since v is a Functor, but the only way we have to transform f a to g a is our argument function forall a . f a -> v (g a).
We can try applying that f anyway along with a Free wrapper in order to fold up our g layer.
hoistFreeA f (Free xs) = ?f . fmap (fmap Free . f) $ traverse (hoistFreeA f) xs
But now we have to solve
?f :: v (v (Free g b)) -> v (Free g b)
which is just join, so we're stuck. This is fundamentally where we're always going to get stuck. Free Monads model Monads and thus in order to wrap over them we need to somehow join or bind.

Parse error in pattern: f . g in fmap (f . g) = fmap f . fmap g

Parse error in pattern: f . g
i am a beginner, where is wrong?
(f . g) x = f (g x)
class Functor f where
fmap :: (a -> b) -> f a -> f b
class Functor g where
fmap :: (a -> b) -> f a -> f b
instance Functor F where
fmap id = id
fmap (f . g) = fmap f . fmap g
When you make an instance of Functor, you should prove the side condition that
fmap id = id
and
fmap (f . g) = fmap f . fmap g
(Technically the latter comes for free given the types involved and the former law, but it is still a good exercise.)
You can't do this just by saying
fmap id = id
but instead you use this as a reasoning tool -- once you have proven it.
That said, the code that you have written doesn't make sense for a number of reasons.
(f . g) x = f (g x)
Since this is indented, I'm somewhat unclear if this is intended to be a definition for (.), but that is already included in the Prelude, so you need not define it again.
class Functor f where
fmap :: (a -> b) -> f a -> f b
This definition is also provided for you in the Prelude.
class Functor g where
fmap :: (a -> b) -> f a -> f b
But then you define the class again, but here it has mangled the signature of fmap, which would have to be
fmap :: (a -> b) -> g a -> g b
But as you have another definition of Functor right above (and the Prelude has still another, you couldn't get that to compile)
Finally, your
instance Functor F where
fmap id = id
fmap (f . g) = fmap f . fmap g
makes up a name F for a type that you want to make into an instance of Functor, and then tries to give the laws as an implementation, which isn't how it works.
Let us take an example of how it should work.
Consider a very simple functor:
data Pair a = Pair a a
instance Functor Pair where
fmap f (Pair a b) = Pair (f a) (f b)
now, to prove fmap id = id, let us consider what fmap id and id do pointwise:
fmap id (Pair a b) = -- by definition
Pair (id a) (id b) = -- by beta reduction
Pair a (id b) = -- by beta reduction
Pair a b
id (Pair a b) = -- by definition
Pair a b
So, fmap id = id in this particular case.
Then you can check (though technically given the above, you don't have to) that fmap f . fmap g = fmap (f . g)
(fmap f . fmap g) (Pair a b) = -- definition of (.)
fmap f (fmap g (Pair a b)) = -- definition of fmap
fmap f (Pair (g a) (g b)) = -- definition of fmap
Pair (f (g a)) (f (g b))
fmap (f . g) (Pair a b) = -- definition of fmap
Pair ((f . g) a) ((f . g) b) = -- definition of (.)
Pair (f (g a)) ((f . g) b) = -- definition of (.)
Pair (f (g a)) (f (g b))
so fmap f . fmap g = fmap (f . g)
Now, you can make function composition into a functor.
class Functor f where
fmap :: (a -> b) -> f a -> f b
by partially applying the function arrow constructor.
Note that a -> b and (->) a b mean the same thing, so when we say
instance Functor ((->) e) where
the signature of fmap specializes to
fmap {- for (->) e -} :: (a -> b) -> (->) e a -> (->) e b
which once you have flipped the arrows around looks like
fmap {- for (->) e -} :: (a -> b) -> (e -> a) -> e -> b
but this is just the signature for function composition!
So
instance Functor ((->)e) where
fmap f g x = f (g x)
is a perfectly reasonable definition, or even
instance Functor ((->)e) where
fmap = (.)
and it actually shows up in Control.Monad.Instances.
So all you need to use it is
import Control.Monad.Instances
and you don't need to write any code to support this at all and you can use fmap as function composition as a special case, so for instance
fmap (+1) (*2) 3 =
((+1) . (*2)) 3 =
((+1) ((*2) 3)) =
((+1) (3 * 2)) =
3 * 2 + 1 =
7
Since . is not a data constructor you cannot use it for pattern matching I believe. As far as I can tell there isn't an easy way to do what you're trying, although I'm pretty new to Haskell as well.
let is not used for top-level bindings, just do:
f . g = \x -> f (g x)
But the complaint, as cobbal said, is about fmap (f . g), which isn't valid. Actually, that whole class Functor F where is screwy. The class is already declared, now I think you want to make and instance:
instance Functor F where
fmap SomeConstructorForF = ...
fmap OtherConstructorForF = ...
etc.

Resources