I have a csv with a timeseries:
timestamp, measure-name, value, type, quality
1503377580,x.x-2.A,0.5281250,Float,GOOD
1503377340,x.x-1.B,0.0000000,Float,GOOD
1503377400,x.x-1.B,0.0000000,Float,GOOD
The measure-name should be my partition key and I would like to calculate a moving average with pyspark, here my code (for instance) to calculate the max
def mysplit(line):
ll = line.split(",")
return (ll[1],float(ll[2]))
text_file.map(lambda line: mysplit(line)).reduceByKey(lambda a, b: max(a , b)).foreach(print)
However, for the average I would like to respect the timestamp ordering.
How to order by a second column?
You need to use a window function on pyspark dataframes:
First you should transform your rdd to a dataframe:
from pyspark.sql import HiveContext
hc = HiveContext(sc)
df = hc.createDataFrame(text_file.map(lambda l: l.split(','), ['timestamp', 'measure-name', 'value', 'type', 'quality'])
Or load it directly as a dataframe:
local:
import pandas as pd
df = hc.createDataFrame(pd.read_csv(path_to_csv, sep=",", header=0))
from hdfs:
df = hc.read.format("com.databricks.spark.csv").option("delimiter", ",").load(path_to_csv)
Then use a window function:
from pyspark.sql import Window
import pyspark.sql.functions as psf
w = Window.orderBy('timestamp')
df.withColumn('value_rol_mean', psf.mean('value').over(w))
+----------+------------+--------+-----+-------+-------------------+
| timestamp|measure_name| value| type|quality| value_rol_mean|
+----------+------------+--------+-----+-------+-------------------+
|1503377340| x.x-1.B| 0.0|Float| GOOD| 0.0|
|1503377400| x.x-1.B| 0.0|Float| GOOD| 0.0|
|1503377580| x.x-2.A|0.528125|Float| GOOD|0.17604166666666665|
+----------+------------+--------+-----+-------+-------------------+
in .orderByyou can order by as many columns as you want
Related
I have a dataframe called Incitoand in Supplier Inv Nocolumn of that data frame consists of comma separated values. I need to recreate the data frame by appropriately repeating those comma separated values using pyspark.I am using following python code for that.Can I convert this into pyspark?Is it possible via pyspark?
from itertools import chain
def chainer(s):
return list(chain.from_iterable(s.str.split(',')))
incito['Supplier Inv No'] = incito['Supplier Inv No'].astype(str)
# calculate lengths of splits
lens = incito['Supplier Inv No'].str.split(',').map(len)
# create new dataframe, repeating or chaining as appropriate
dfnew = pd.DataFrame({'Supplier Inv No': chainer(incito['Supplier Inv No']),
'Forwarder': np.repeat(incito['Forwarder'], lens),
'Mode': np.repeat(incito['Mode'], lens),
'File No': np.repeat(incito['File No'], lens),
'ETD': np.repeat(incito['ETD'], lens),
'Flight No': np.repeat(incito['Flight No'], lens),
'Shipped Country': np.repeat(incito['Shipped Country'], lens),
'Port': np.repeat(incito['Port'], lens),
'Delivered_Country': np.repeat(incito['Delivered_Country'], lens),
'AirWeight': np.repeat(incito['AirWeight'], lens),
'FREIGHT CHARGE': np.repeat(incito['FREIGHT CHARGE'], lens)})
This is what I tried in pyspark.But I am not getting the expected outcome.
from pyspark.context import SparkContext, SparkConf
from pyspark.sql.session import SparkSession
from pyspark.sql import functions as F
import pandas as pd
conf = SparkConf().setAppName("appName").setMaster("local")
sc = SparkContext(conf=conf)
spark = SparkSession(sc)
ddf = spark.createDataFrame(dfnew)
exploded = ddf.withColumn('d', F.explode("Supplier Inv No"))
exploded.show()
Something like this, using repeat?
from pyspark.sql import functions as F
df = (spark
.sparkContext
.parallelize([
('ABCD',),
('EFGH',),
])
.toDF(['col_a'])
)
(df
.withColumn('col_b', F.repeat(F.col('col_a'), 2))
.withColumn('col_c', F.repeat(F.lit('X'), 10))
.show()
)
# +-----+--------+----------+
# |col_a| col_b| col_c|
# +-----+--------+----------+
# | ABCD|ABCDABCD|XXXXXXXXXX|
# | EFGH|EFGHEFGH|XXXXXXXXXX|
# +-----+--------+----------+
I have an column id which had type int but later changed to bigint.
It has both types of values.
from pyspark.sql.functions import *
from pyspark.sql.types import *
df = spark.read.parquet('hdfs path')
df = df.select("id", "code")
df=df.withColumn("id1", df["id"].cast(LongType()))
res1=df.select("id1", "code")
res1.show(1, False)
It shows me the data frame but when i try to perform some operations on them
example:
res1.groupBy('code').agg(countDistinct("id1")).show(1, False)
I get Column: [id], Expected: int, Found: INT64
I tried mergeSchema did not work either.
from pyspark.sql.functions import *
from pyspark.sql.types import *
df1 = spark.read.parquet('hdfs path')
df2 = df1.select("id", "code")
df3 = df2.withColumn("id1", df2["id"].cast(LongType()))
res1=df3.select("id1", "code")
res1.show(1, False)
res1.groupBy("code").agg(countDistinct("id1")).show(1, False)
This should work. In spark Dataframes are immutable so you should not assign the value of transformation operation to a same df variable, you should use a different variable name. In scala it would give you compile time error but in python its allowed so you don't notice it.
if you want you could also chain all of your transformation and get a single df variable and perform groupby operation on it as below :
df = spark.read.parquet('hdfs path').select("id", "code").withColumn("id1", col("id").cast(LongType())).select("id1", "code")
df.groupBy("code").agg(countDistinct("id1")).show(1, False)
I have Spark dataframe. I am trying to insert value in new column using lit, but the value is not being inserted.
Example:
I am trying below code:
df:
+--------------------+----------+---------+
| Programname|Projectnum| Drug|
+--------------------+----------+---------+
|Non-Oncology Phar...|SR0480-000|Invokamet|
+--------------------+----------+---------+
from pyspark.sql.functions import lit
df=df.withColumn("CDE_rec_crdt_dt", lit([str(x.CDE_rec_crdt_dt) for x in df_active.select('CDE_rec_crdt_dt').distinct().collect()][0]))
The value of -
[str(x.CDE_rec_crdt_dt) for x in df_active.select('CDE_rec_crdt_dt').distinct().collect()][0] ---'2020-12-03'
Desired output:
df:
+--------------------+----------+---------+----------------+
| Programname|Projectnum| Drug|CDE_rec_crdt_dt |
+--------------------+----------+---------+----------------+
|Non-Oncology Phar...|SR0480-000|Invokamet|2020-12-03 |
+--------------------+----------+---------+----------------+
val = str(df_active.select('CDE_rec_crdt_dt').distinct().collect()[0][0])
df = df.withColumn(
"CDE_rec_crdt_dt",
lit(val)
)
I have a requirement to extract time from timestamp(this is a column in dataframe) using pyspark.
lets say this is the timestamp 2019-01-03T18:21:39 , I want to extract only time "18:21:39" such that it always appears in this manner "01:01:01"
df = spark.createDataFrame(["2020-06-17T00:44:30","2020-06-17T06:06:56","2020-06-17T15:04:34"],StringType()).toDF('datetime')
df=df.select(df['datetime'].cast(TimestampType()))
I tried like below but did not get the expected result
df1=df.withColumn('time',concat(hour(df['datetime']),lit(":"),minute(df['datetime']),lit(":"),second(df['datetime'])))
display(df1)
+-------------------+-------+
| datetime| time|
+-------------------+-------+
|2020-06-17 00:44:30|0:44:30|
|2020-06-17 06:06:56| 6:6:56|
|2020-06-17 15:04:34|15:4:34|
+-------------------+-------+
my results are like this 6:6:56 but i want them to be 06:06:56
Use the date_format function.
from pyspark.sql.types import StringType
df = spark \
.createDataFrame(["2020-06-17T00:44:30","2020-06-17T06:06:56","2020-06-17T15:04:34"], StringType()) \
.toDF('datetime')
from pyspark.sql.functions import date_format
q = df.withColumn('time', date_format('datetime', 'HH:mm:ss'))
>>> q.show()
+-------------------+--------+
| datetime| time|
+-------------------+--------+
|2020-06-17T00:44:30|00:44:30|
|2020-06-17T06:06:56|06:06:56|
|2020-06-17T15:04:34|15:04:34|
+-------------------+--------+
Could someone help me solve this problem I have with Spark DataFrame?
When I do myFloatRDD.toDF() I get an error:
TypeError: Can not infer schema for type: type 'float'
I don't understand why...
Example:
myFloatRdd = sc.parallelize([1.0,2.0,3.0])
df = myFloatRdd.toDF()
Thanks
SparkSession.createDataFrame, which is used under the hood, requires an RDD / list of Row/tuple/list/dict* or pandas.DataFrame, unless schema with DataType is provided. Try to convert float to tuple like this:
myFloatRdd.map(lambda x: (x, )).toDF()
or even better:
from pyspark.sql import Row
row = Row("val") # Or some other column name
myFloatRdd.map(row).toDF()
To create a DataFrame from a list of scalars you'll have to use SparkSession.createDataFrame directly and provide a schema***:
from pyspark.sql.types import FloatType
df = spark.createDataFrame([1.0, 2.0, 3.0], FloatType())
df.show()
## +-----+
## |value|
## +-----+
## | 1.0|
## | 2.0|
## | 3.0|
## +-----+
but for a simple range it would be better to use SparkSession.range:
from pyspark.sql.functions import col
spark.range(1, 4).select(col("id").cast("double"))
* No longer supported.
** Spark SQL also provides a limited support for schema inference on Python objects exposing __dict__.
*** Supported only in Spark 2.0 or later.
from pyspark.sql.types import IntegerType, Row
mylist = [1, 2, 3, 4, None ]
l = map(lambda x : Row(x), mylist)
# notice the parens after the type name
df=spark.createDataFrame(l,["id"])
df.where(df.id.isNull() == False).show()
Basiclly, you need to init your int into Row(), then we can use the schema
Inferring the Schema Using Reflection
from pyspark.sql import Row
# spark - sparkSession
sc = spark.sparkContext
# Load a text file and convert each line to a Row.
orders = sc.textFile("/practicedata/orders")
#Split on delimiters
parts = orders.map(lambda l: l.split(","))
#Convert to Row
orders_struct = parts.map(lambda p: Row(order_id=int(p[0]), order_date=p[1], customer_id=p[2], order_status=p[3]))
for i in orders_struct.take(5): print(i)
#convert the RDD to DataFrame
orders_df = spark.createDataFrame(orders_struct)
Programmatically Specifying the Schema
from pyspark.sql import Row
# spark - sparkSession
sc = spark.sparkContext
# Load a text file and convert each line to a Row.
orders = sc.textFile("/practicedata/orders")
#Split on delimiters
parts = orders.map(lambda l: l.split(","))
#Convert to tuple
orders_struct = parts.map(lambda p: (p[0], p[1], p[2], p[3].strip()))
#convert the RDD to DataFrame
orders_df = spark.createDataFrame(orders_struct)
# The schema is encoded in a string.
schemaString = "order_id order_date customer_id status"
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
schema = Struct
ordersDf = spark.createDataFrame(orders_struct, schema)
Type(fields)
from pyspark.sql import Row
myFloatRdd.map(lambda x: Row(x)).toDF()