Python - Insert value to list in a dictionary - python-3.x

I need your help to fix my code. I try to append a value to a list in a dictionary.
def distance(x1, y1, x2, y2):
dis=((x1-x2)**2) + ((y1-y2)**2)
return dis
def cluster_member_formation2(arrCH, arrN, k):
dicCH = dict.fromkeys(arrCH,[])
arrE = []
for j in range(len(arrCH)):
d_nya = distance(arrN[1][0], arrN[1][1], arrN[arrCH[j]][0], arrN[arrCH[j]][1])
arrE.append(d_nya)
minC = min(arrE)
ind = arrE.index(minC)
x = arrCH[ind]
dicCH[x].append(1)
print(arrE, minC, ind, x, dicCH)
arrCH=[23, 35]
arrN={0:[23, 45, 2, 0], 1:[30,21,2,0], 23:[12, 16, 2, 0], 35:[48, 77, 2, 0]}
cluster_member_formation2(arrCH, arrN, 1)
The output:
[349, 3460] 349 0 23 {35: [1], 23: [1]}
I try to calculate the distance between node 1 and all node in arrCH, and then take the minimum distance. In the output show the result of arrE is [349, 3460], so the minimum is 349. 349 has index 0, then I find arrCH with index 0, likes arrCH[0]=23. Finally, I want update dicCH[23].append(1) so the result is
{35: [], 23: [1]}
But, why my code update the all keys, 35 and 23?
I hope someone can help me.
Thank you..

classmethod fromkeys(seq[, value])
Create a new dictionary with keys
from seq and values set to value.
All of your dictionary values reference the same single list instance ([]) which you provide as a value to the fromkeys function.
You could use dictionary comprehension as seen in this answer.
dicCH = {key: [] for key in arrCH}

Related

I have a double nested list. I would like to remove the second element inside of the nested list. i.e. [[[x,1],[x,2],[x,3]],[[x,1],[x,2],[x,3]]]

for x in y:
[z.pop(0) for z in x]
IndexError: pop index out of range.
The function seems to keep looping after it has gone through all the values of x. I would like to move on the next value of x after it has done it has completed its work. I understand that the error is occurring due to the changing of my data shape, but how do I avoid this?
First solution:
nested_list = [[[11,1],[20,2],[300,3]],[[100,1],[202,2],[303,3]]]
for lst in nested_list:
for j in lst:
j.pop(1)
print(nested_list)
The above solution will give you the following output:
[[[11], [20], [300]], [[100], [202], [303]]]
Second Solution
nested_list = [[[11,1],[20,2],[300,3]],[[100,1],[202,2],[303,3]]]
result = []
for lst in nested_list:
for j in lst:
result.append(j[0])
print(result)
del nested_list
The above solution will give you the following output:
[11, 20, 300, 100, 202, 303]
If you are familiar with python then you can also go with the following:
nested_list = [[[11,1],[20,2],[300,3]],[[100,1],[202,2],[303,3]]]
def return_first(lst):
return [j[0] for i in lst for j in i]
print(return_first(nested_list))
del nested_list
The above solution will give you the following output:
[11, 20, 300, 100, 202, 303]

How to find highest number from the vector provided?

Say, a dictionary is provided with certain values.
How to find the highest number ?
Input
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector = 5
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector = 5
l1 = list(td.values())
Based on vector value, it should print output.
vector is 5, so sum of the dict-values to form vector is 3,1,1
Corresponding keys are 5,4,1
so, the output should be 541 but slight change here.
Since value '1' is associated with multiple keys, it should pick up highest key,
so, output should be 544 instead of 541 (For above input, to brief about combinations without considering '1+1+1+1+1' to '44444')
Another example
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector = 7
Possible combinations:
3 # --> Key of 7
21 # --> Key of 6 & 1 (6+1 = 7)
24 # --> Key of 6 & 1 (6+1 = 7)
12 # --> Key of 1 & 6 (1+6 = 7)
42 # --> Key of 1 & 6 (1+6 = 7)
Output : 42 (Highest number)
Another
d1 = {1:9,2:4,3:2,4:2,5:6,6:3,7:2,8:2,9:1}
vector = 5
here, it would be 1+2+2 (988).
But, '1' can also be added 5 times to form vector 5,
which would be '99999'
Since #Patrick Artner requested for minimal reproducible example, posting this though doesn't work as expected.
from itertools import combinations
def find_sum_with_index(l1, vector):
index_vals = [iv for iv in enumerate(l1) if iv[1] < target]
for r in range(1, len(index_vals) + 1):
for perm in combinations(index_vals, r):
if sum([p[1] for p in perm]) == target:
yield perm
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector=5
l1=list(d1.values())
for match in find_sum_with_index(l1, vector):
print(dict(match))
Is there any specific algorithm to be chosen for these kind of stuffs ?
Similar to the other answer but allowing repeatedly using the same keys to get the max number of keys which values sum up to vector:
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector = 7
#create a dict that contains value -> max-key for that value
d2 = {}
for k,v in d1.items():
d2[v] = max(d2.get(v,-1), k)
def mod_powerset(iterable,l):
# uses combinations_with_replacement to allow multiple usages of one value
from itertools import chain, combinations_with_replacement
s = list(set(iterable))
return chain.from_iterable(combinations_with_replacement(s, r) for r in range(l))
# create all combinations that sum to vector
p = [ s for s in mod_powerset(d1.values(),vector//min(d1.values())+1) if sum(s) == vector]
print(p)
# sort combinations by length then value descending and take the max one
mp = max( (sorted(y, reverse=True) for y in p), key=lambda x: (len(x),x))
# get the correct keys to be used from d2 dict
rv = [d2[num] for num in mp]
# sort by values, biggest first
rv.sort(reverse=True)
# solution
print(''.join(map(str,rv)))
Original powerset - see itertools-recipes.
There are some steps involved, see documentation in comments in code:
d1 = {1: 1, 2: 6, 3: 7, 4: 1, 5: 3}
vector = 7
# create a dict that contains value -> sorted key-list, used to get final keys
from collections import defaultdict
d2 = defaultdict(list)
for k,v in d1.items():
d2[v].append(k)
for k,v in d2.items():
d2[k] = sorted(v, reverse=True)
from itertools import chain, combinations
def powerset(iterable):
"see itertools: powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
# create all combinations that sum to vector
p = [ s for s in powerset(d1.values()) if sum(s) == vector]
# sort combinations by length then value descending and take the max one
mp = max( (sorted(y, reverse=True) for y in p), key=lambda x: (len(x),x))
# get the correct keys to be used from d2 dict
rv = []
for num in mp:
rv.append(d2[num][0])
# remove used key from list
d2[num][:] = d2[num][1:]
# sort by values, biggest first
rv.sort(reverse=True)
# solution
print(''.join(map(str,rv)))
For powerset - see itertools-recipes.

Fastest way to find all the indexes of maximum value in a list - Python

I am having list which as follows
input_list= [2, 3, 5, 2, 5, 1, 5]
I want to get all the indexes of maximum value. Need efficient solution. The output will be as follows.
output = [2,4,6] (The above list 5 is maximum value in a list)
I have tried by using below code
m = max(input_list)
output = [i for i, j in enumerate(a) if j == m]
I need to find any other optimum solution.
from collections import defaultdict
dic=defaultdict(list)
input_list=[]
for i in range(len(input_list)):
dic[input_list[i]]+=[i]
max_value = max(input_list)
Sol = dic[max_value]
You can use numpy (numpy arrays are very fast):
import numpy as np
input_list= np.array([2, 3, 5, 2, 5, 1, 5])
i, = np.where(input_list == np.max(input_list))
print(i)
Output:
[2 4 6]
Here's the approach which is described in comments. Even if you use some library, fundamentally you need to traverse at least once to solve this problem (considering input list is unsorted). So even lower bound for the algorithm would be Omega(size_of_list). If list is sorted we can leverage binary_search to solve the problem.
def max_indexes(l):
try:
assert l != []
max_element = l[0]
indexes = [0]
for index, element in enumerate(l[1:]):
if element > max_element:
max_element = element
indexes = [index + 1]
elif element == max_element:
indexes.append(index + 1)
return indexes
except AssertionError:
print ('input_list in empty')
Use a for loop for O(n) and iterating just once over the list resolution:
from itertools import islice
input_list= [2, 3, 5, 2, 5, 1, 5]
def max_indexes(l):
max_item = input_list[0]
indexes = [0]
for i, item in enumerate(islice(l, 1, None), 1):
if item < max_item:
continue
elif item > max_item:
max_item = item
indexes = [i]
elif item == max_item:
indexes.append(i)
return indexes
Here you have the live example
Think of it in this way, unless you iterate through the whole list once, which is O(n), n being the length of the list, you won't be able to compare the maximum with all values in the list, so the best you can do is O(n), which you already seems to be doing in your example.
So I am not sure you can do it faster than O(n) with the list approach.

Filter array by last value Toleranz

i‘ m using Python 3.7.
I have an Array like this:
L1 = [1,2,3,-10,8,12,300,17]
Now i want to filter the values(the -10 and the 300 is not okay)
The values in the array may be different but always counting up or counting down.
Has Python 3 a integrated function for that?
The result should look like this:
L1 = [1,2,3,8,12,17]
Thank you !
Edit from comments:
I want to keep each element if it is only a certain distance (toleranz: 10 f.e.) distance away from the one before.
Your array is a list. You can use built in functions:
L1 = [1,2,3,-10,8,12,300,17]
min_val = min(L1) # -10
max_val = max(L1) # 300
p = list(filter(lambda x: min_val < x < max_val, L1)) # all x not -10 or 300
print(p) # [1, 2, 3, 8, 12, 17]
Doku:
min()
max()
filter()
If you want instead an incremental filter you go through your list of datapoints and decide if to keep or not:
delta = 10
result = []
last = L1[0] # first one as last value .. check the remaining list L1[1:]
for elem in L1[1:]:
if last-delta < elem < last+delta:
result.append(last)
last = elem
if elem-delta < result[-1] < elem+delta :
result.append(elem)
print(result) # [1, 2, 3, 8, 12, 17]

Python: Use a for loop to get Nth number out of a list

I need to get every 3rd value out of a list and add it to a new list.
This is what I have so far.
def make_reduced_samples(original_samples, skip):
skipped_list = []
for count in range(0, len(original_samples), skip):
skipped_list.append(count)
return skipped_list
skip is equal to 3
I get the indexes and not the value of the numbers in the list.
It gives me [0,3,6]. Which are the indexes in the list and not the value of the indexes.
The example I am given is:
In this list [12,87,234,34,98,11,9,72], you should get [12,34,9].
I cannot use skipped_list = original_samples[::3] in any way.
You need to append the value of the original_samples array at the index. Not the index (count) itself.
def make_reduced_samples(original_samples, skip):
skipped_list = []
for count in range(0, len(original_samples), skip):
skipped_list.append(original_samples[count])
return skipped_list
The correct, most pythonic, and most efficient way to do that is to use slicing.
lst = [12, 87, 234, 34, 98, 11, 9, 72]
skipped_list = lst[::3]
print(skipped_list) # [12, 34, 9]
If the step does not obey a linear relation (which it does here), then you could use a list-comprehension with enumerate to filter on the index.
skipped_list = [x for i, x in enumerate(lst) if i % 3 == 0]
print(skipped_list) # [12, 34, 9]
One liner:
skipped_list = [j for (i,j) in enumerate(original_samples, start=1) if i % 3 == 0]

Resources