I am trying to migrate table definitions from one Hive metastore to another.
The source cluster has:
Spark 1.6.0
Hive 1.1.0 (cdh)
HDFS
The destination cluster is an EMR cluster with:
Spark 2.1.1
Hive 2.1.1
S3
To migrate the tables I did the following:
Copy data from HDFS to S3
Run SHOW CREATE TABLE my_table; in the source cluster
Modify the returned create query - change LOCATION from the HDFS path to the S3 path
Run the modified query on the destination cluster's Hive
Run SELECT * FROM my_table;. This returns 0 rows (expected)
Run MSCK REPAIR TABLE my_table;. This passes as expected and registers the partitions in the metastore.
Run SELECT * FROM my_table LIMIT 10; - 10 lines are returned with correct values
On the destination cluster, from Spark that is configured to work with the Hive Metastore, run the following code: spark.sql("SELECT * FROM my_table limit 10").show() - This returns null values!
The result returned from the Spark SQL query has all the correct columns, and the correct number of lines, but all the values are null.
To get Spark to correctly load the values, I can add the following properties to the TBLPROPERTIES part of the create query:
'spark.sql.partitionProvider'='catalog',
'spark.sql.sources.provider'='org.apache.spark.sql.parquet',
'spark.sql.sources.schema.numPartCols'='<partition-count>',
'spark.sql.sources.schema.numParts'='1',
'spark.sql.sources.schema.part.0'='<json-schema as seen by spark>'
'spark.sql.sources.schema.partCol.0'='<partition name 1>',
'spark.sql.sources.schema.partCol.1'='<partition name 2>',
...
The other side of this problem is that in the source cluster, Spark reads the table values without any problem and without the extra TBLPROPERTIES.
Why is this happening? How can it be fixed?
Related
I'm running Spark SQL statements via a thrift server (Spark 3.2.0, Hive 3.1.2) running on an EMR cluster (6.6.0).
I'm trying to replace/override the schema in an external table (defined in a Glue metastore through Hive) through a REPLACE COLUMNS statement via Spark SQL:
ALTER EXTERNAL TABLE gateway_dev.delta_pilot10 REPLACE COLUMNS( id int, updated_at timestamp, email string )
The statement fails on the following exception:
org.apache.hive.service.cli.HiveSQLException: Error running query: org.apache.spark.sql.AnalysisException: REPLACE COLUMNS is only supported with v2 tables.
The statement runs successfully as HQL - the external table schema is changed in the Glue metastore. However, I need to execute the statement through Spark SQL. I think this could be a Spark SQL / Apache Hive compatibility failure.
My question is 1) how I can upgrade Spark to support "v2" tables (from the exception message) or 2) if there's another way to overwrite the schema on an external table from Spark SQL.
I am using spark 2.4.4 and hive 2.3 ...
Using spark, I am loading a dataframe as Hive table using DF.insertInto(hiveTable)
if new table is created during run (of course before insertInto thru spark.sql) or existing tables created by spark 2.4.4 - everything works fine.
Issue is, if I am attempting to load some existing tables (older tables created spark 2.2 or before) - facing issues with COUNT of records. Diff count when count of target hive table is done thru beeline vs spark sql.
Please assist.
There seems to be an issue with sync of hive-Metastore and spark-catalog for hive tables (with parquet file format) created o2.n spark 2 (or before - with comple /nested data tydata type) and loaded using spark v2.4.
Usual case, spark.catalog.refresh(<hive-table-name>) will refresh the stats from hiveMetastore to spark.catalog.
In this case, an explicit spark.catalog.resfreshByPath(<location-maprfs-path>) need to bed executed to refresh the stats.pet*
I'm writing a dataframe to an external hive table from pyspark running on EMR. The work involves dropping/truncating data from an external hive table, writing the contents of a dataframe into aforementioned table, then writing the data from hive to DynamoDB. I am looking to write to an internal table on the EMR cluster but for now I would like the hive data to be available to subsequent clusters. I could write to the Glue catalog directly and force it to registered but that is a step further than I need to go.
All components work fine individually on a given EMR cluster: I can create an external hive table on EMR, either using a script or ssh and hive shell. This table can be queried by Athena and can be read from by pyspark. I can create a dataframe and INSERT OVERWRITE the data into the aforementioned table in pyspark.
I can then use hive shell to copy the data from the hive table into a DynamoDB table.
I'd like to wrap all of the work into the one pyspark script instead of having to submit multiple distinct steps.
I am able to drop tables using
sqlContext.sql("drop table if exists default.my_table")
When I try to create a table using sqlContext.sql("create table default.mytable(id string,val string) STORED AS ORC") I get the following error:
org.apache.hadoop.net.ConnectTimeoutException: Call From ip-xx-xxx-xx-xxx/xx.xxx.xx.xx to ip-xxx-xx-xx-xx:8020 failed on socket timeout exception: org.apache.hadoop.net.ConnectTimeoutException: 20000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=ip-xxx-xx-xx-xx:8020]; For more details see: http://wiki.apache.org/hadoop/SocketTimeout
I can't figure out why I can create an external hive table in Glue using hive shell on the cluster, drop the table using hive shell or pyspark sqlcontext, but I can't create a table using sqlcontext. I have checked around and the solutions offered don't make sense in this context (copying hive-site.xml) as I can clearly write to the required addresses with no hassle, just not in pyspark. And it is doubly strange that I can drop the tables with them being definitely dropped when I check in Athena.
Running on:
emr-5.28.0,
Hadoop distribution Amazon 2.8.5
Spark 2.4.4
Hive 2.3.6
Livy 0.6.0 (for notebooks but my experimentation is via ssh and pyspark shell)
Turns out I could create tables via a spark.sql() call as long as I provided a location for the tables. Seems like Hive shell doesn't require it, yet spark.sql() does. Not expected but not entirely unsurprising.
Complementing #Zeathor's answer. After configuring the EMR and Glue connection and permission (you can check more in here: https://www.youtube.com/watch?v=w20tapeW1ME), you will just need to write sparkSQL commands:
spark = SparkSession.builder.appName('TestSession').getOrCreate()
spark.sql("create database if not exists test")
You can then create your tables from dataframes:
df.createOrReplaceTempView("first_table");
spark.sql("create table test.table_name as select * from first_table");
All the databases and tables metadata will then be stored in AWS Glue Catalogue.
I have a simple Hive-External table which is created on top of S3 (Files are in CSV format). When I run the hive query it shows all records and partitions.
However when I use the same table in Spark ( where the Spark SQL has a where condition on the partition column) it does not show that a partition filter is applied. However for a Hive Managed table , Spark is able to use the information of partitions and apply the partition filter.
Is there any flag or setting that can help me make use of partitions of Hive external tables in Spark ? Thanks.
Update :
For some reason, only the spark plan is not showing the Partition Filters. However, when you look at the data loaded its only loading the data needed from the partitions.
Ex: Where rating=0 , loads only one file of 1 MB, when I don't have filter its reads all 3 partition for 3 MB
tl; dr set the following before the running sql for external table
spark.sql("set spark.sql.hive.convertMetastoreOrc=true")
The difference in behaviour is not because of extenal/managed table.
The behaviour depends on two factors
1. Where the table was created(Hive or Spark)
2. File format (I believe it is ORC in this case, from the screen capture)
Where the table was created(Hive or Spark)
If the table was create using Spark APIs, it is considered as Datasource table.
If the table was created usng HiveQL, it is considered as Hive native table.
The metadata of both these tables are store in Hive metastore, the only difference is in the provider field of TBLPROPERTIES of the tables(describe extended <tblName>). The value of the property is orcor empty in Spark table and hive for a Hive.
How spark uses this information
When provider is not hive(datasource table), Spark uses its native way of processing the data.
If provider is hive, Spark uses Hive code to process the data.
Fileformat
Spark gives config flag to instruct the engine to use Datasource way of processing the data for the floowing file formats = Orc and Parquet
Flags:
Orc
val CONVERT_METASTORE_ORC = buildConf("spark.sql.hive.convertMetastoreOrc")
.doc("When set to true, the built-in ORC reader and writer are used to process " +
"ORC tables created by using the HiveQL syntax, instead of Hive serde.")
.booleanConf
.createWithDefault(true)
Parquet
val CONVERT_METASTORE_PARQUET = buildConf("spark.sql.hive.convertMetastoreParquet")
.doc("When set to true, the built-in Parquet reader and writer are used to process " +
"parquet tables created by using the HiveQL syntax, instead of Hive serde.")
.booleanConf
.createWithDefault(true)
I also ran into this kind of problem having multiple joins of internal and external tables.
None of the tricks work including:
spark.sql("set spark.sql.hive.convertMetastoreParquet=false")
spark.sql("set spark.sql.hive.metastorePartitionPruning=true")
spark.sql("set spark.sql.hive.caseSensitiveInferenceMode=NEVER_INFER")
anyone who knows how to solve this problem.
I am using spark dataframe writer to write the data in internal hive tables in parquet format in IBM Cloud Object Storage.
So , my hive metastore is in HDP cluster and I am running the spark job from the HDP cluster. This spark job writes the data to the IBM COS in parquet format.
This is how I am starting the spark session
SparkSession session = SparkSession.builder().appName("ParquetReadWrite")
.config("hive.metastore.uris", "<thrift_url>")
.config("spark.sql.sources.bucketing.enabled", true)
.enableHiveSupport()
.master("yarn").getOrCreate();
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.api.key",credentials.get(ConnectionConstants.COS_APIKEY));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.service.id",credentials.get(ConnectionConstants.COS_SERVICE_ID));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.endpoint",credentials.get(ConnectionConstants.COS_ENDPOINT));
The issue that I am facing is that when I partition the data and store it (via partitionBy) I am unable to access the data directly from spark sql
spark.sql("select * from partitioned_table").show
To fetch the data from the partitioned table , I have to load the dataframe and register it as a temp table and then query it.
The above issue does not occur when the table is not partitioned.
The code to write the data is this
dfWithSchema.orderBy(sortKey).write()
.partitionBy("somekey")
.mode("append")
.format("parquet")
.option("path",PARQUET_PATH+tableName )
.saveAsTable(tableName);
Any idea why the the direct query approach is not working for the partitioned tables in COS/Parquet ?
To read the partitioned table(created by Spark), you need to give the absolute path of the table as below.
selected_Data=spark.read.format("parquet").option("header","false").load("hdfs/path/loc.db/partition_table")
To filter out it further, please try the below approach.
selected_Data.where(col("column_name")=='col_value').show()
This issue occurs when the property hive.metastore.try.direct.sql is set to true on the HiveMetastore configurations and the SparkSQL query is run over a non STRING type partition column.
For Spark, it is recommended to create tables with partition columns of STRING type.
If you are getting below error message while filtering the hive partitioned table in spark.
Caused by: MetaException(message:Filtering is supported only on partition keys of type string)
recreate your hive partitioned table with partition column datatype as string, then you would be able to access the data directly from spark sql.
else you have to specify the absolute path of your hdfs location to get the data incase your partitioned column has been defined as varchar.
selected_Data=spark.read.format("parquet").option("header","false").load("hdfs/path/loc.db/partition_table")
However I was not able to understand, why it's differentiating in between a varchar and string datatype for partition column