Clustering of facebook-users with k-means - node.js

i got a facebook-list of user-ids from following page:
Stanford Facebook-Data
If you look at the facebook_combined data, you can see that it is a list of user-connections (edges). So for instance user 0 has something to do with user 1,2,3 and so on.
Now my work is to find clusters in the dataset.
In the first step i used node.js to read the file and save the data in an array like this:
array=[[0,1],[0,2], ...]
In the second step i used a k-means plugin for node.js to cluster the data:
Cluster-Plugin
But i dont know if the result is right, because now i get clusters of edges and not clusters of users.
UPDATE:
I am trying out a markov implementation for node js. The Markov Plugin however needs an adjacency matrix to build clusters. I implemented an algorithm with java to save the matrix in a file.
Maybe you got any other suggestion how i could get clusters out of edges.

K-means assumes your input data issue an R^d vector space.
In fact, it requires the data to be this way, because it computes means as cluster centers, hence the name k-means.
So if you want to use k-means, then you need
One row per datapoint (not an edge list)
A fixed dimensionality data space where the mean is a useful center (usually, you should have continuous attributes, on binary data the mean does not make too much sense) and where least-squares is a meaningful optimization criterion (again, on binary data, least-squares does not have a strong theoretical support)
On your Faceboook data, you could try some embedding, but I'd have doubts about the trustworthiness.

Related

PCA in Spark MLlib and Spark ML

Spark now has two machine learning libraries - Spark MLlib and Spark ML. They do somewhat overlap in what is implemented, but as I understand (as a person new to the whole Spark ecosystem) Spark ML is the way to go and MLlib is still around mostly for backward compatibility.
My question is very concrete and related to PCA. In MLlib implementation there seems to be a limitation of the number of columns
spark.mllib supports PCA for tall-and-skinny matrices stored in row-oriented format and any Vectors.
Also, if you look at the Java code example there is also this
The number of columns should be small, e.g, less than 1000.
On the other hand, if you look at ML documentation, there are no limitations mentioned.
So, my question is - does this limitation also exists in Spark ML? And if so, why the limitation and is there any workaround to be able to use this implementation even if the number of columns is large?
PCA consists in finding a set of decorrelated random variables that you can represent your data with, sorted in decreasing order with respect to the amount of variance they retain.
These variables can be found by projecting your data points onto a specific orthogonal subspace. If your (mean-centered) data matrix is X, this subspace is comprised of the eigenvectors of X^T X.
When X is large, say of dimensions n x d, you can compute X^T X by computing the outer product of each row of the matrix by itself, then adding all the results up. This is of course amenable to a simple map-reduce procedure if d is small, no matter how large n is. That's because the outer product of each row by itself is a d x d matrix, which will have to be manipulated in main memory by each worker. That's why you might run into trouble when handling many columns.
If the number of columns is large (and the number of rows not so much so) you can indeed compute PCA. Just compute the SVD of your (mean-centered) transposed data matrix and multiply it by the resulting eigenvectors and the inverse of the diagonal matrix of eigenvalues. There's your orthogonal subspace.
Bottom line: if the spark.ml implementation follows the first approach every time, then the limitation should be the same. If they check the dimensions of the input dataset to decide whether they should go for the second approach, then you won't have problems dealing with large numbers of columns if the number of rows is small.
Regardless of that, the limit is imposed by how much memory your workers have, so perhaps they let users hit the ceiling by themselves, rather than suggesting a limitation that may not apply for some. That might be the reason why they decided not to mention the limitation in the new docs.
Update: The source code reveals that they do take the first approach every time, regardless of the dimensionality of the input. The actual limit is 65535, and at 10,000 they issue a warning.

how to calculate distance between any two elements in more than 10^8 data to Clustering them using spark?

I have more than 10^8 records stored in elasticSearch. Now I want to clustering them by writing a hierarchical algorithm or using PIC based on spark MLlib.
However, I can't use some efficient algorithm like K-means because every record is stored in the form of
{mainID:[subId1,subId2,subId3,...]}
which obviously is not in euclidean space.
I need to calculate the distance of every pair of records which will take a very LONG time I guess (10^8 * 10^8). I know the cartesian product in spark to do such computing , but there will appear the duplicated ones like (mainID1,mainID2) and (mainID2,mainID1), which is not suitable to PIC.
Does anyone know a better way to cluster these records? Or any method to delete the duplicated ones in the result RDD of cartesian product?
Thanks A lot!
First of all, don't take the full Cartesian product:
select where a.MainID > b.MainID
This doesn't reduce the complexity, but it does save about 2x in generation time.
That said, consider your data "shape" and select the clustering algorithm accordingly. K-means, HC, and PIC have three different applications. You know K-means already, I'm sure.
PIC basically finds gaps in the distribution of distances. It's great for well-defined sets (clear boundaries), even when those curl around each other or nest. However, if you have a tendril of connecting points (like a dumbbell with a long, thin bar), PIC will not separate the obvious clusters.
HC is great for such sets, and is a good algorithm in general. Most HC algorithms have an "understanding" of density, and tend to give clusterings that fit human cognition's interpretation. However, HC tends to be slow.
I strongly suggest that you consider a "seeded" algorithm: pick a random subset of your points, perhaps
sqrt(size) * dim
points, where size is the quantity of points (10^8) and dim is the number of dimensions. For instance, your example has 5 dimensions, so take 5*10^4 randomly selected points. Run the first iterations on those alone, which will identify centroids (K-means), eigenvectors (PIC), or initial hierarchy (HC). With those "seeded" values, you can now characterize each of the candidate clusters with 2-3 parameters. Classifying the remaining 10^8 - 5*10^4 points against 3 parameters is a lot faster, being O(size) time instead of O(size^2).
Does that get you moving toward something useful?

How to collapse a RandomForest into an equivalent decision tree?

The way I understand it, in creating a random forest, the algorithm bundles a bunch of randomly generated decision trees together, weighting them such that they fit the training data.
Is it reasonable to say that this average of forests could be simplified into a simple decision tree? And, if so - how can I access and present this tree?
What I'm looking to do here is extract the information in the tree to help identify both the leading attributes, their boundary values and placement in the tree. I'm assuming that such a tree would provide insight to a human (or computer heuristic) as to which attributes within a dataset provide the most insight into determining the target outcome.
This probably seems a naive question - and if so, please be patient, I'm new to this and want to get to a stage where I understand it sufficiently.
RandomForest uses bootstrap to create many training sets by sampling the data with replacement (bagging). Each bootstrapped set is very close to the original data, but slightly different, since it may have multiples of the some points and some other points in the original data will be missing. (This helps create a whole bunch of similar but different sets that as a whole represent the population your data came from, and allow better generalization)
Then it fits a DecisionTree to each set. However, what a regular DecisionTree does at each step, is to loop over each feature, find the best split for each feature, and in the end choose to do the split in the feature that produced the best one among all. In RandomForest, instead of looping over every feature to find the best split, you only try a random subsample at each step (default is sqrt(n_features)).
So, every tree in RandomForest is fit to a bootstrapped random training set. And at each branching step, it only looks at a subsample of features, so some of the branching will be good but not necessarily the ideal split. This means that each tree is a less than ideal fit to the original data. When you average the result of all these (sub-ideal) trees, though, you get a robust prediction. Regular DecisionTrees overfit the data, this two-way randomization (bagging and feature subsampling) allow them to generalize and a forest usually does a good job.
Here is the catch: While you can average out the output of each tree, you cannot really "average the trees" to get an "average tree". Since trees are a bunch of if-then statements that are chained, there is no way of taking these chains and coming up with a single chain that produces the result that's the same as averaged result from each chain. Each tree in the forest is different, even if same features show up, they show up in different places of the trees, which makes it impossible to combine. You cannot represent a RandomForest as a single tree.
There are two things you can do.
1) As RPresle mentioned, you can look at the .feature_importances_ attribute, which for each feature averages the splitting score from different trees. The idea is, while you can't get an average tree, you can quantify how much and how effectively each feature is used in the forest by averaging their score in each tree.
2) When I fit a RandomForest model and need to get some insight into what's happening, how the features are affecting the result, I also fit a single DecisionTree. Now, this model is usually not good at all by itself, it will easily be outperformed by the RandomForest and I wouldn't use it to predict anything, but by drawing and looking at the splits in this tree, combined with the .feature_importances_ of the forest, I usually get a pretty good idea of the big picture.

Text Documents Clustering - Non Uniform Clusters

I have been trying to cluster a set of text documents. I have a sparse TFIDF matrix with around 10k documents (subset of a large dataset), and I try to run the scikit-learn k-means algorithm with different sizes of clusters (10,50,100). Rest all the parameters are default values.
I get a very strange behavior that no matter how many clusters I specify or even if I change the number of iterations, there would be 1 cluster in the lot which would contain most of the documents in itself and there will be many clusters which would have just 1 document in them. This is highly non-uniform behavior
Does anyone know what kind of problem am I running into?
Here are the possible things that might be going "wrong":
Your k-means cluster initialization points are chosen as the same set of points in each run. I recommend using the 'random' for the init parameter of k-means http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. If that doesn't work then supply to k-means your own set of random initial cluster centers. Remember to initialize your random generator using its seed() method as the current date and time. https://docs.python.org/2/library/random.html uses current date-time as the default value.
Your distance function, i.e. euclidean distance might be the culprit. This is less likely but it is always good to run k-means using cosine similarity especially when you are using it for document similarity. scikits doesn't have this functionality at present but you should look here: Is it possible to specify your own distance function using scikit-learn K-Means Clustering?
These two combined should give you good clusters.
I noticed with the help of above answers and comments that there was a problem with outliers and noise in original space. For this, we should use a dimensionality reduction method which eliminates the unwanted noise in the data. I tried random projections first but it failed to work with text data, simply because the problem was still not solved.
Then using Truncated Singular Value Decomposition, I was able to get perfect uniform clusters. Hence, the Truncated SVD is the way to go with textual data in my opinion.

Distance dependent Chinese Restaurant Process maybe

I'm new to machine learning and want to implement the distance dependent Chinese Restaurant process in MATLAB for the clustering of audio tracks.
I'm looking to use the dd-CRP on 26 features. I'm guessing the process might go like this
Read in 1st feature vector and assign it a "table"
Read in 2nd feature vector and compare it to the 1st "table", maybe using the cosine angle(due to high dimension) of the two vectors and if it agrees within some defined theta, join that table, else start a new one.
Read in next feature and repeat step 2 for the new feature vector for each existing table.
While this is occurring, I will be keeping track of how many tables there are.
I will be running the algorithm over say for example 16 audio tracks. The way the audio will be fed into the algorithm is the first feature vector will be from say the first frame from audio track 1, the second feature vector from form the first frame in track 2 etc. as I'm trying to find out which audio tracks like to cluster together most, but I don't want to define how many centroids there are. Obviously I'll have to keep track of which audio track is at which "table".
Does this make sense?
This is not a Chinese Restaurant Process. This is a heuristic algorithm which has some similarity to a Chinese Restaurant Process. In a CRP everything is phrased in terms of priors over the assignments of items to clusters (the tables analogy), and these are combined with a likelihood function for each cluster (which formalises the similarity function you described). Inference is then done by Gibbs Sampling, which means non-deterministically sampling which cluster each track is assigned to in turn given all the other assignments. Variational methods for non-parametrics are still in a very preliminary state.
Why do you want to use a CRP? Do you think you'll get something out of it beyond more conventional clustering methods? The bar to entry for the implementation and proper understanding of non-parametrics is pretty high, and they're often of little practical use at the moment because of the constraints on inference I mentioned.
You can use the X-means algorithm, which automatically determines the optimal number of centroids (and hence number of clusters) based on the Bayesian Information Criterion (or BIC). In short, the algorithm looks for how dense each cluster is, and how far is each cluster from the other.

Resources