Abaqus Python script -- Reading 'TENSOR_3D_FULL' data from *.odb file - python-3.x

What I want: strain values LE11, LE22, LE12 at nodal points
My script is:
#!/usr/local/bin/python
# coding: latin-1
# making the ODB commands available to the script
from odbAccess import*
import sys
import csv
odbPath = "my *.odb path"
odb = openOdb(path=odbPath)
assembly = odb.rootAssembly
# count the number of frames
NumofFrames = 0
for v in odb.steps["Step-1"].frames:
NumofFrames = NumofFrames + 1
# create a variable that refers to the reference (undeformed) frame
refFrame = odb.steps["Step-1"].frames[0]
# create a variable that refers to the node set ‘Region Of Interest (ROI)’
ROINodeSet = odb.rootAssembly.nodeSets["ROI"]
# create a variable that refers to the reference coordinate ‘REFCOORD’
refCoordinates = refFrame.fieldOutputs["COORD"]
# create a variable that refers to the coordinates of the node
# set in the test frame of the step
ROIrefCoords = refCoordinates.getSubset(region=ROINodeSet,position= NODAL)
# count the number of nodes
NumofNodes =0
for v in ROIrefCoords.values:
NumofNodes = NumofNodes +1
# looping over all the frames in the step
for i1 in range(NumofFrames):
# create a variable that refers to the current frame
currFrame = odb.steps["Step-1"].frames[i1+1]
# looping over all the frames in the step
for i1 in range(NumofFrames):
# create a variable that refers to the strain 'LE'
Str = currFrame.fieldOutputs["LE"]
ROIStr = Str.getSubset(region=ROINodeSet, position= NODAL)
# initialize list
list = [[]]
# loop over all the nodes in each frame
for i2 in range(NumofNodes):
strain = ROIStr.values [i2]
list.insert(i2,[str(strain.dataDouble[0])+";"+str(strain.dataDouble[1])+\
";"+str(strain.dataDouble[3]))
# write the list in a new *.csv file (code not included for brevity)
odb.close()
The error I get is:
strain = ROIStr.values [i2]
IndexError: Sequence index out of range
Additional info:
Details for ROIStr:
ROIStr.name
'LE'
ROIStr.type
TENSOR_3D_FULL
OIStr.description
'Logarithmic strain components'
ROIStr.componentLabels
('LE11', 'LE22', 'LE33', 'LE12', 'LE13', 'LE23')
ROIStr.getattribute
'getattribute of openOdb(r'path to .odb').steps['Step-1'].frames[1].fieldOutputs['LE'].getSubset(position=INTEGRATION_POINT, region=openOdb(r'path to.odb').rootAssembly.nodeSets['ROI'])'
When I use the same code for VECTOR objects, like 'U' for nodal displacement or 'COORD' for nodal coordinates, everything works without a problem.
The error happens in the first loop. So, it is not the case where it cycles several loops before the error happens.
Question: Does anyone know what is causing the error in the above code?

Here the reason you get an IndexError. Strains are (obviously) calculated at the integration points; according to the ABQ Scripting Reference Guide:
A SymbolicConstant specifying the position of the output in the element. Possible values are:
NODAL, specifying the values calculated at the nodes.
INTEGRATION_POINT, specifying the values calculated at the integration points.
ELEMENT_NODAL, specifying the values obtained by extrapolating results calculated at the integration points.
CENTROID, specifying the value at the centroid obtained by extrapolating results calculated at the integration points.
In order to use your code, therefore, you should get the results using position= ELEMENT_NODAL
ROIrefCoords = refCoordinates.getSubset(region=ROINodeSet,position= ELEMENT_NODAL)
With
ROIStr.values[0].data
You will then get an array containing the 6 independent components of your tensor.
Alternative Solution
For reading time series of results for a nodeset, you can use the function xyPlot.xyDataListFromField(). I noticed that this function is much faster than using odbread. The code also is shorter, the only drawback is that you have to get an abaqus license for using it (in contrast to odbread which works with abaqus python which only needs an installed version of abaqus and does not need to get a network license).
For your application, you should do something like:
from abaqus import *
from abaqusConstants import *
from abaqusExceptions import *
import visualization
import xyPlot
import displayGroupOdbToolset as dgo
results = session.openOdb(your_file + '.odb')
# without this, you won't be able to extract the results
session.viewports['Viewport: 1'].setValues(displayedObject=results)
xyList = xyPlot.xyDataListFromField(odb=results, outputPosition=NODAL, variable=((
'LE', INTEGRATION_POINT, ((COMPONENT, 'LE11'), (COMPONENT, 'LE22'), (
COMPONENT, 'LE33'), (COMPONENT, 'LE12'), )), ), nodeSets=(
'ROI', ))
(Of course you have to add LE13 etc.)
You will get a list of xyData
type(xyList[0])
<type 'xyData'>
Containing the desired data for each node and each output. It size will therefore be
len(xyList)
number_of_nodes*number_of_requested_outputs
Where the first number_of_nodes elements of the list are the LE11 at each nodes, then LE22 and so on.
You can then transform this in a NumPy array:
LE11_1 = np.array(xyList[0])
would be LE11 at the first node, with dimensions:
LE.shape
(NumberTimeFrames, 2)
That is, for each time step you have time and output variable.
NumPy arrays are also very easy to write on text files (check out numpy.savetxt).

Related

Stuck using pandas to build RPG item generator

I am trying to build a simple random item generator for a game I am working on.
So far I am stuck trying to figure out how to store and access all of the data. I went with pandas using .csv files to store the data sets.
I want to add weighted probabilities to what items are generated so I tried to read the csv files and compile each list into a new set.
I got the program to pick a random set but got stuck when trying to pull a random row from that set.
I am getting an error when I use .sample() to pull the item row which makes me think I don't understand how pandas works. I think I need to be creating new lists so I can later index and access the various statistics of the items once one is selected.
Once I pull the item I was intending on adding effects that would change the damage and armor and such displayed. So I was thinking of having the new item be its own list then use damage = item[2] + 3 or whatever I need
error is: AttributeError: 'list' object has no attribute 'sample'
Can anyone help with this problem? Maybe there is a better way to set up the data?
here is my code so far:
import pandas as pd
import random
df = [pd.read_csv('weapons.csv'), pd.read_csv('armor.csv'), pd.read_csv('aether_infused.csv')]
def get_item():
item_class = [random.choices(df, weights=(45,40,15), k=1)] #this part seemed to work. When I printed item_class it printed one of the entire lists at the correct odds
item = item_class.sample()
print (item) #to see if the program is working
get_item()
I think you are getting slightly confused with lists vs list elements. This should work. I stubbed your dfs with simple ones
import pandas as pd
import random
# Actual data. Comment it out if you do not have the csv files
df = [pd.read_csv('weapons.csv'), pd.read_csv('armor.csv'), pd.read_csv('aether_infused.csv')]
# My stubs -- uncomment and use this instead of the line above if you want to run this specific example
# df = [pd.DataFrame({'weapons' : ['w1','w2']}), pd.DataFrame({'armor' : ['a1','a2', 'a3']}), pd.DataFrame({'aether' : ['e1','e2', 'e3', 'e4']})]
def get_item():
# I removed [] from the line below -- choices() already returns a list of length 1
item_class = random.choices(df, weights=(45,40,15), k=1)
# I added [0] to choose the first element of item_class which is a list of length 1 from the line above
item = item_class[0].sample()
print (item) #to see if the program is working
get_item()
prints random rows from random dataframes that I setup such as
weapons
1 w2

'numpy.ndarray' object has no attribute 'write'

I am writing a python code to calculate the background of an astronomical image of globular cluster M15 (M15 reduced). My code can calculate the background and plot it using plt.imshow(). To save the background subtracted image I have to convert it to a str from a numpy.nparray. I have tried many things including the np.array2string used here. The file just stays as an array, which can't be saved as I need it to save as a .fits file. Any ideas how to get this to a str?
The code:
#sigma clip is the number of standard deviations from centre value that value can be before being rejected
sigma_clip = SigmaClip(sigma=2.)
#used to estimate the background in each of the meshes
bkg_estimator = MedianBackground()
#define path for reading in images
M15red_path = Path('.', 'ObservingData/M15normalised/')
M15red_images = ccdp.ImageFileCollection(M15red_path)
M15reduced = M15red_images.files_filtered(imagetyp='Light Frame', include_path=True)
M15backsub_path = Path('.', 'ObservingData/M15backsub/')
for n in range (0,59):
bkg = Background2D(CCDData.read(M15reduced[n]).data, box_size=(20,20),
filter_size=(3, 3),
edge_method='pad',
sigma_clip=sigma_clip,
bkg_estimator=bkg_estimator)
M15subback = CCDData.read(M15reduced[n]).data - bkg.background
np.array2string(M15subback)
#M15subback.write(M15backsub_path / 'M15backsub{}.fits'.format(n))
print(type(M15subback[1]))
You could try using [numpy.save][1] (but it saves a '.npy' file). In your case,
import numpy as np
...
for n in range (0,59):
...
np.save('M15backsub{}.npy'.format(n), M15backsub)
Since you need to store a numpy array, this should work.

How to process the data returned from a function (Python 3.7)

Background:
My question should be relatively easy, however I am not able to figure it out.
I have written a function regarding queueing theory and it will be used for ambulance service planning. For example, how many calls for service can I expect in a given time frame.
The function takes two parameters; a starting value of the number of ambulances in my system starting at 0 and ending at 100 ambulances. This will show the probability of zero calls for service, one call for service, three calls for service….up to 100 calls for service. Second parameter is an arrival rate number which is the past historical arrival rate in my system.
The function runs and prints out the result to my screen. I have checked the math and it appears to be correct.
This is Python 3.7 with the Anaconda distribution.
My question is this:
I would like to process this data even further but I don’t know how to capture it and do more math. For example, I would like to take this list and accumulate the probability values. With an arrival rate of five, there is a cumulative probability of 61.56% of at least five calls for service, etc.
A second example of how I would like to process this data is to format it as percentages and write out a text file
A third example would be to process the cumulative probabilities and exclude any values higher than the 99% cumulative value (because these vanish into extremely small numbers).
A fourth example would be to create a bar chart showing the probability of n calls for service.
These are some of the things I want to do with the queueing theory calculations. And there are a lot more. I am planning on writing a larger application. But I am stuck at this point. The function writes an output into my Python 3.7 console. How do I “capture” that output as an object or something and perform other processing on the data?
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import csv
def probability_x(start_value = 0, arrival_rate = 0):
probability_arrivals = []
while start_value <= 100:
probability_arrivals = [start_value, math.pow(arrival_rate, start_value) * math.pow(math.e, -arrival_rate) / math.factorial(start_value)]
print(probability_arrivals)
start_value = start_value + 1
return probability_arrivals
#probability_x(arrival_rate = 5, x = 5)
#The code written above prints to the console, but my goal is to take the returned values and make other calculations.
#How do I 'capture' this data for further processing is where I need help (for example, bar plots, cumulative frequency, etc )
#failure. TypeError: writerows() argument must be iterable.
with open('ExpectedProbability.csv', 'w') as writeFile:
writer = csv.writer(writeFile)
for value in probability_x(arrival_rate = 5):
writer.writerows(value)
writeFile.close()
#Failure. Why does it return 2. Yes there are two columns but I was expecting 101 as the length because that is the end of my loop.
print(len(probability_x(arrival_rate = 5)))
The problem is, when you write
probability_arrivals = [start_value, math.pow(arrival_rate, start_value) * math.pow(math.e, -arrival_rate) / math.factorial(start_value)]
You're overwriting the previous contents of probability_arrivals. Everything that it held previously is lost.
Instead of using = to reassign probability_arrivals, you want to append another entry to the list:
probability_arrivals.append([start_value, math.pow(arrival_rate, start_value) * math.pow(math.e, -arrival_rate) / math.factorial(start_value)])
I'll also note, your while loop can be improved. You're basically just looping over start_value until it reaches a certain value. A for loop would be more appropriate here:
for s in range(start_value, 101): # The end value is exclusive, so it's 101 not 100
probability_arrivals = [s, math.pow(arrival_rate, s) * math.pow(math.e, -arrival_rate) / math.factorial(s)]
print(probability_arrivals)
Now you don't need to manually worry about incrementing the counter.

Why is my notebook crashing when I run this for loop and what is the fix?

I have taken code in relation to the Kalman Filter and am attempting to iterate through each column of data. What I would like to have happen is:
The column data is fed into the filter
The filtered column data (xhat) is placed into another DataFrame (filtered)
The filtered column data (xhat) is used to produce a visual.
I have created a for loop to iterate through the column data, but when I run the cell, I crash the notebook. When it doesn't crash, I get this warning:
C:\Users\perso\Anaconda3\envs\learn-env\lib\site-packages\ipykernel_launcher.py:45: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
Thanks in advance for any help. I hope this question is detailed enough. I bombed on the last one.
'''A Python implementation of the example given in pages 11-15 of "An
Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
University of North Carolina at Chapel Hill, Department of Computer
Science, TR 95-041,
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf'''
# by Andrew D. Straw
import numpy as np
import matplotlib.pyplot as plt
# dataframe created to hold filtered data
filtered = pd.DataFrame()
# intial parameters
for column in data:
n_iter = len(data.index) #number of iterations equal to sample numbers
sz = (n_iter,) # size of array
z = data[column] # observations
Q = 1e-5 # process variance
# allocate space for arrays
xhat=np.zeros(sz) # a posteri estimate of x
P=np.zeros(sz) # a posteri error estimate
xhatminus=np.zeros(sz) # a priori estimate of x
Pminus=np.zeros(sz) # a priori error estimate
K=np.zeros(sz) # gain or blending factor
R = 1.0**2 # estimate of measurement variance, change to see effect
# intial guesses
xhat[0] = z[0]
P[0] = 1.0
for k in range(1,n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q
# measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k]
# add new data to created dataframe
filtered.assign(a = [xhat])
#create visualization of noise reduction
plt.rcParams['figure.figsize'] = (10, 8)
plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('column data')
plt.ylabel('Measurement')
This seems like a pretty straightforward error. The warning indicates that you have attempted to plot more figures than the current limit before a warning is created (a parameter you can change but which by default is set to 20). This is because in each iteration of your for loop, you create a new figure. Depending on the size of n_iter, you are opening potentially hundreds or thousands of figures. Each of these figures takes resources to generate and show, so you are creating a very large resource load on your system. Either it is processing very slowly due or is crashing altogether. In any case, the solution is to plot fewer figures.
I don't know exactly what you're plotting in your loop but it seems like each iteration of your loop corresponds to one time step and at each time step you'd like to plot the estimated and actual values. In this case, you need to define a figure and figure options once, outside of the loop, rather than at each iteration. But a better way to do this is probably to generate all of the data you want to plot ahead of time and store it in an easy-to-plot datatype like lists, then plot it once at the end.

Getting array of Keyframe points in Blender

Hi i got a script im working on and its not working out as well as I want it to
This is what I got so far
import bpy
def Key_Frame_Points(): #Gets the key-frame values as an array.
fcurves = bpy.context.active_object.animation_data.action.fcurves
for curve in fcurves:
keyframePoints = fcurves[4].keyframe_points # selects Action channel's axis / attribute
for keyframe in keyframePoints:
print('KEY FRAME POINTS ARE #T ',keyframe.co[0])
KEYFRAME_POINTS_ARRAY = keyframe.co[0]
print(KEYFRAME_POINTS_ARRAY)
Key_Frame_Points()
When I run this its printing out all the keyframes on the selected Objects as I wanted it to. But the problem is that I cant for some reason get the Values its printing into a variable. If you run it and check the the System concole. its acting odd.Like as in its printing out the Values of the Keyframed object.But when I ask it to get those values as an array, its just printing out the last frame.
Here is how it looks like briefly
I think what you want to do is add each keyframe.co[1] to an array which means you want to use KEYFRAME_POINTS_ARRAY.append(keyframe.co[1]) and for that to work you will need to define it as an empty array outside the loop with KEYFRAME_POINTS_ARRAY = []
Note that keyframe.co[0] is the frame that is keyed while keyframe.co[1] is the keyed value at that frame.
Also of note is that you are looping through fcurves but not using each curve.
for curve in fcurves:
keyframePoints = fcurves[4].keyframe_points
By using fcurves[4] here you are reading the same fcurve every time, you probably meant to use keyframePoints = curve.keyframe_points
So I expect you want to have -
import bpy
def Key_Frame_Points(): #Gets the key-frame values as an array.
KEYFRAME_POINTS_ARRAY = []
fcurves = bpy.context.active_object.animation_data.action.fcurves
for curve in fcurves:
keyframePoints = curve.keyframe_points
for keyframe in keyframePoints:
print('KEY FRAME POINTS ARE frame:{} value:{}'.format(keyframe.co[0],keyframe.co[1]))
KEYFRAME_POINTS_ARRAY.append(keyframe.co[1])
return KEYFRAME_POINTS_ARRAY
print(Key_Frame_Points())
You may also be interested to use fcurves.find(data_path) to find a specific curve by it's path.
There is also fcurve.evaluate(frame) that will give you the curve value at any frame not just the keyed values.

Resources