Inputs and Outputs of the Geometry Shader - direct3d

I was wondering if anyone would be so kind as to pin-point the problem with my program. I am certain the setback has something to do with the way in which data is passed through the GS. If, for instance, the geometry shader is taken out of the code (modifying the other two stages to accommodate for the change as well), I end up with a operational pipeline. And if I modify the data input of the GS to accept PS_INPUT instead of VS_DATA, the program does not crash, but outputs a blank blue screen. My intent here is to create a collection of squares on a two-dimensional plane, so blank blue screens are not exactly what I am going for.
Texture2D txDiffuse[26] : register(t0);
SamplerState samLinear : register(s0); //For Texturing
#define AWR_MAX_SHADE_LAY 1024
cbuffer ConstantBuffer : register(b0)
{
float4 Matrix_Array[30];
matrix Screen;
float GM;
float GA;
float GD;
float epsilon;
}
// Includes Layer Data
cbuffer CBLayer : register(b1)
{
float4 Array_Fill_Color[AWR_MAX_SHADE_LAY];
float4 Array_Line_Color[AWR_MAX_SHADE_LAY];
float Array_Width[AWR_MAX_SHADE_LAY];
float Array_Line_Pattern[AWR_MAX_SHADE_LAY];
float Array_Z[AWR_MAX_SHADE_LAY];
float Array_Thickness[AWR_MAX_SHADE_LAY];
}
//Input for Vertex Shader
struct VS_DATA
{
float4 Pos : POSITION;
int M2W_index : M2W_INDEX;
int Layer_index : LAYER_INDEX;
};
//Input for Pixel Shader
struct PS_INPUT{
float4 Pos : SV_POSITION;
float4 Color : COLOR;
int Layer_index : LAYER_INDEX;
};
//Vertex Shader
VS_DATA VS(VS_DATA input)// Vertex Shader
{
VS_DATA output = (VS_DATA)0;
//Model to World Transform
float xm = input.Pos.x, yw = input.Pos.y, zm = input.Pos.z, ww = input.Pos.w, xw, zw;
float4 transformation = Matrix_Array[input.M2W_index];
xw = ((xm)*transformation.y - (zm)*transformation.x) + transformation.z;
zw = ((xm)*transformation.x + (zm)*transformation.y) + transformation.w;
//set color
int valid_index = input.Layer_index;
output.Color = Array_Fill_Color[valid_index];
output.Color.a = 0.0;
//output.Vertex_index = input.Vertex_index;
//output.Next_Vertex_index = input.Next_Vertex_index;
//Snapping process
float sgn_x = (xw >= 0) ? 1.0 : -1.0;
float sgn_z = (zw >= 0) ? 1.0 : -1.0;
int floored_x = (int)((xw + (sgn_x*GA) + epsilon)*GD);
int floored_z = (int)((zw + (sgn_z*GA) + epsilon)*GD);
output.Pos.x = ((float)floored_x)*GM;
output.Pos.y = yw;
output.Pos.z = ((float)floored_z)*GM;
output.Pos.w = ww;
int another_valid_index = input.Layer_index;
output.Layer_index = another_valid_index;
// Transform to Screen Space
output.Pos = mul(output.Pos, Screen);
return output;
}
[maxvertexcount(6)]
void GS_Line(line VS_DATA points[2], inout TriangleStream<PS_INPUT> output)
{
float4 p0 = points[0].Pos;
float4 p1 = points[1].Pos;
float w0 = p0.w;
float w1 = p1.w;
p0.xyz /= p0.w;
p1.xyz /= p1.w;
float3 line01 = p1 - p0;
float3 dir = normalize(line01);
float3 ratio = float3(700.0, 0.0, 700.0);
ratio = normalize(ratio);
float3 unit_z = normalize(float3(0.0, -1.0, 0.0));
float3 normal = normalize(cross(unit_z, dir) * ratio);
float width = 0.01;
PS_INPUT v[4];
float3 dir_offset = dir * ratio * width;
float3 normal_scaled = normal * ratio * width;
float3 p0_ex = p0 - dir_offset;
float3 p1_ex = p1 + dir_offset;
v[0].Pos = float4(p0_ex - normal_scaled, 1) * w0;
v[0].Color = float4(1.0, 1.0, 1.0, 1.0);
v[0].Layer_index = 1;
v[1].Pos = float4(p0_ex + normal_scaled, 1) * w0;
v[1].Color = float4(1.0, 1.0, 1.0, 1.0);
v[1].Layer_index = 1;
v[2].Pos = float4(p1_ex + normal_scaled, 1) * w1;
v[2].Color = float4(1.0, 1.0, 1.0, 1.0);
v[2].Layer_index = 1;
v[3].Pos = float4(p1_ex - normal_scaled, 1) * w1;
v[3].Color = float4(1.0, 1.0, 1.0, 1.0);
v[3].Layer_index = 1;
output.Append(v[2]);
output.Append(v[1]);
output.Append(v[0]);
output.RestartStrip();
output.Append(v[3]);
output.Append(v[2]);
output.Append(v[0]);
output.RestartStrip();
}
//Pixel Shader
float4 PS(PS_INPUT input) : SV_Target{
float2 Tex = float2(input.Pos.x / (8.0), input.Pos.y / (8.0));
int the_index = input.Layer_index;
float4 tex0 = txDiffuse[25].Sample(samLinear, Tex);
if (tex0.r > 0.0)
tex0 = float4(1.0, 1.0, 1.0, 1.0);
else
tex0 = float4(0.0, 0.0, 0.0, 0.0);
if (tex0.r == 0.0)
discard;
tex0 *= input.Color;
return tex0;
}

If you compile your vertex shader as it is, you will have the following error :
(line 53) : invalid subscript 'Color'
output.Color = Array_Fill_Color[valid_index];
output is of type VS_DATA which does not contain color.
If you change your VS definition as :
PS_INPUT VS(VS_DATA input)// Vertex Shader
{
PS_INPUT output = (PS_INPUT)0;
//rest of the code here
Then your vs will compile, but then you will have a mismatched layout with GS (GS still expects a line of VS_DATA as input, and now you provide PS_INPUT to it)
This will not give you any error until you draw (and generally runtime will silently fail, you would have a mismatch message in case debug layer is on)
So you also need to modify your GS to accept PS_INPUT as input eg:
[maxvertexcount(6)]
void GS_Line(line PS_INPUT points[2], inout TriangleStream<PS_INPUT> output)

Related

View-space position of a sample point

I am working on implementing Crytek's original SSAO implementation and I have found myself stuck and confused at the part where I need to find the view-space position of the sample. I have implemented a method which I feel should work however, it seems to give me an odd result with blackening occurring at the back. Am I missing something? Would appreciate any insight, thanks in advance.
vec3 depthToPositions(vec2 tc)
{
float depth = texture(depthMap, tc).x;
vec4 clipSpace = vec4(tc * 2.0 - 1.0, depth, 1.0);
vec4 viewSpace = inverse(camera.proj) * clipSpace;
return viewSpace.xyz / viewSpace.w;
}
for(int i = 0; i < ssao.sample_amount; ++i) {
// Mittring, 2007 "Finding next gen CryEngine 2" document suggests to reflect sample
vec3 samplePos = reflect(ssao.samples[i].xyz, plane);
samplePos.xy = samplePos.xy * 0.5 + 0.5; // conver to 0-1 texture coordinates
samplePos = depthToPositions(samplePos.xy); // this is how I am retrieving view-space position of sample
samplePos = viewSpacePositions + samplePos * radius;
vec4 offset = vec4(samplePos, 1.0);
offset = camera.proj * offset;
offset.xyz /= offset.w;
offset.xy = offset.xy * 0.5 + 0.5;
float sampleDepth = texture(gPosition, offset.xy).z;
float rangeCheck = (viewSpacePositions.z - sampleDepth) < radius ? 1.0 : 0.0;
occlusion += (sampleDepth >= samplePos.z + bias ? 1.0 : 0.0) * rangeCheck;
}
Generating samples in C++
for(unsigned int i = 0; i < 64; i++) {
glm::vec4 sample(
randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator) * 2.0 - 1.0,
randomFloats(generator) * 2.0 - 1.0, 0.0);
sample = glm::normalize(sample);
sample *= randomFloats(generator);
float scale = float(i) / 64;
scale = Lerp(0.1f, 1.0f, scale * scale);
sample *= scale;
ssaoKernel.push_back(sample);
}

Vulkan diffuse shading doesn't change with object transformation

System:
GPU: Intel(R) UHD Graphics
Here is my shader code:
vertex shader:
#version 450
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;
layout(location = 2) in vec3 normal;
layout(location = 3) in vec2 uv;
layout(location = 0) out vec3 fragCol;
layout(push_constant) uniform Push {
mat4 transform; // projection * view * model
mat4 modelMatrix;
} push;
vec3 DIRECTION_TO_LIGHT = normalize(vec3(1.0, -10.0, -1.0));
void main() {
gl_Position = push.transform * vec4(position, 1.0);
vec3 normalWorldSpace = normalize(mat3(push.modelMatrix) * normal);
float lightIntensity = max(dot(normalWorldSpace, DIRECTION_TO_LIGHT), 0);
fragCol = lightIntensity * vec3(1.0);
}
fragment shader:
#version 450 core
layout(location = 0) in vec3 fragCol;
layout(location = 0) out vec4 outColor;
layout(push_constant) uniform Push{
mat4 transform;
mat4 modelMatrix;
}push;
void main(){
outColor = vec4(fragCol, 1.0);
}
The dark parts of the model remain dark even while rotating on the z-axis. It is like the color is baked into the model which isn't the case.
I tried calculating the color on the fragment shader but that didn't work either.
Code calculating the transform matrix:
auto projectionMatrix = camera.getProjection() * camera.getView();
for (auto& obj : gameObjects) {
//rotating doesn't change the dark pixels.
obj.transform.rotation.y += glm::radians(45.0f) * deltaTime;
SimplePushConstantData push{};
auto modelMatrix = obj.transform.mat4();
push.transform = projectionMatrix * modelMatrix;
push.modelMatrix = modelMatrix;
vkCmdPushConstants(commandBuffer, pipelineLayout,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(SimplePushConstantData), &push);
obj.model->bind(commandBuffer);
obj.model->draw(commandBuffer);
}

PBR - Incorrect direct lighting

Based on many internet resources I wrote PBR implementation for directional lighting for my DirectX 11 game engine, but It works incorrectly.
Bellow, you can see a screenshot where I forced metalness to 0.0f and roughness to 1.0f. As you can see there are too many reflections. For example, the grass is reflective very, but roughness is set to 0, so it shouldn't look like that.
Bellow, I visualized ambientLigting and it looks correct.
Unfortunately, directLighting seems completely off and I don't know why. There are too many reflections. It might be because I applied PBR formulas incorrectly for the directional light source, but I don't know how to make it correct.
Here is my PBR source code. I hope you will help me solve this problem or at least give me a hint, where the problem may be because, to be honest, I have no idea at this moment how to fix it.
static const float PI = 3.14159265359f;
static const float3 DIELECTRIC_FACTOR = float3(0.04f, 0.04f, 0.04f);
static const float EPSILON = 0.00001f;
float DistributionGGX(float3 normal, float3 halfway, float roughness)
{
float alpha = roughness * roughness;
float alphaSquare = alpha * alpha;
float cosHalfway = max(dot(normal, halfway), 0.0f);
float cosHalfwaySquare = cosHalfway * cosHalfway;
float denominator = (cosHalfwaySquare * (alphaSquare - 1.0f)) + 1.0f;
denominator = PI * denominator * denominator;
return alphaSquare / denominator;
}
float GeometrySchlickGGX(float cosinus, float roughness)
{
float r = (roughness + 1.0);
float k = (r * r) / 8.0;
float denominator = cosinus * (1.0 - k) + k;
return cosinus / denominator;
}
float GeometrySmith(float3 normal, float roughness, float cosView, float cosLight)
{
return GeometrySchlickGGX(cosView, roughness) * GeometrySchlickGGX(cosLight, roughness);
}
float3 FresnelSchlick(float cosTheta, float3 F0)
{
return F0 + (1.0f - F0) * pow(1.0f - cosTheta, 5.0f);
}
float3 FresnelSchlickRoughness(float cosTheta, float3 F0, float roughness)
{
return F0 + (max(float(1.0f - roughness).xxx, F0) - F0) * pow(1.0f - cosTheta, 5.0f);
}
int GetTextureMipMapLevels(TextureCube input)
{
int width, heigth, levels;
input.GetDimensions(0, width, heigth, levels);
return levels;
}
float3 Pbr(float3 albedo, float3 normal, float metallic, float roughness, float occlusion,
TextureCube irradianceTexture, TextureCube radianceTexture, Texture2D brdfLut,
SamplerState defaultSampler, SamplerState brdfSampler, float3 lightDirection,
float3 lightColor, float3 cameraPosition, float3 pixelPosition, float shadowMultiplier)
{
lightDirection *= -1;
float3 viewDirection = normalize(cameraPosition - pixelPosition);
float3 halfwayDirection = normalize(viewDirection + lightDirection);
float3 reflectionDirection = reflect(-viewDirection, normal);
float3 F0 = lerp(DIELECTRIC_FACTOR, albedo, metallic);
float cosView = max(dot(normal, viewDirection), 0.0f);
float cosLight = max(dot(normal, lightDirection), 0.0f);
float NDF = DistributionGGX(normal, halfwayDirection, roughness);
float G = GeometrySmith(normal, roughness, cosView, cosLight);
float3 F = FresnelSchlick(max(dot(halfwayDirection, viewDirection), 0.0f), F0);
float3 nominator = NDF * G * F;
float denominator = 4 * cosView * cosLight + EPSILON;
float3 specular = nominator / denominator;
float3 kD = lerp(float3(1.0f, 1.0f, 1.0f) - F, float3(0.0f, 0.0f, 0.0f), metallic);
float3 directLighting = (kD * albedo / PI + specular) * lightColor * cosLight;
F = FresnelSchlickRoughness(cosView, F0, roughness);
kD = lerp(float3(1.0f, 1.0f, 1.0f) - F, float3(0.0f, 0.0f, 0.0f), metallic);
float3 irradiance = irradianceTexture.Sample(defaultSampler, normal).rgb;
float3 diffuse = irradiance * albedo;
int radianceLevels = GetTextureMipMapLevels(radianceTexture);
float3 radiance = radianceTexture.SampleLevel(defaultSampler, reflectionDirection, roughness * radianceLevels).rgb;
float2 brdf = brdfLut.Sample(brdfSampler, float2(cosView, roughness)).xy;
float3 specularColor = radiance * (F0 * brdf.x + brdf.y);
float3 ambientLighting = (kD * diffuse + specularColor) * occlusion;
return ambientLighting + (directLighting * shadowMultiplier);
}

Implementing Ambient Occlusion in simple Voxel Renderer

I am currently trying to implement Ambient Occlusion in a simple Voxel Renderer, each block is rendered (unless not visible) with 24 vertices and 12 triangles, so no meshing of any kind.
I followed this tutorial on how ambient occlusion for minecraft-like worlds could work, but it didn't explain how to actually implement that in shaders / graphics programming, so what I've done so far are only my uneducated best guesses.
The basic idea is, for each vertex to generate a value from the surrounding blocks about how "dark" the ambient occlusion should be. (Nevermind my values being completely wrong currently). These are from 0 (no surroundings) to 3 (vertex completely surrounded) The picture in the tutorial I linked helps to explain that.
So I tried that, but it seems to not darken the area around a vertex, but instead the whole triangle, the vertex is in... How do I make it not do that? I am a total beginner in shaders and graphics programming, so any help is appreciated :D
Here is my vertex shader, the inputs are
position of vertex
normal of vertex
tex_coord in texture atlas
tile_uv: position on block (0 or 1 for left/right bottom/top)
the ambient_occlusion value
#version 450
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 normal;
layout(location = 2) in vec2 tex_coord;
layout(location = 3) in vec2 tile_uv;
layout(location = 4) in uint ambient_occlusion;
layout(location = 0) out vec3 v_position;
layout(location = 1) out vec3 v_normal;
layout(location = 2) out vec2 v_tex_coord;
layout(location = 3) out vec2 v_tile_uv;
layout(location = 4) out uint v_ambient_occlusion;
layout(set = 0, binding = 0) uniform Data {
mat4 world;
mat4 view;
mat4 proj;
vec2 tile_size;
} uniforms;
void main() {
mat4 worldview = uniforms.view * uniforms.world;
v_normal = mat3(transpose(inverse(uniforms.world))) * normal;
v_tex_coord = tex_coord;
v_tile_uv = tile_uv;
v_position = vec3(uniforms.world * vec4(position, 1.0));
v_ambient_occlusion = ambient_occlusion;
gl_Position = uniforms.proj * worldview * vec4(position.x, position.y, position.z, 1.0);
}
And here is my fragment shader:
#version 450
layout(location = 0) in vec3 v_position;
layout(location = 1) in vec3 v_normal;
layout(location = 2) in vec2 v_tex_coord;
layout(location = 3) in vec2 v_tile_uv;
layout(location = 4) in flat uint v_ambient_occlusion;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 1) uniform sampler2D block_texture;
void main() {
vec3 ao_color;
switch (v_ambient_occlusion) {
case 0: ao_color = vec3(1.0, 0.0, 0.0); break;
case 1: ao_color = vec3(0.0, 1.0, 0.0); break;
case 2: ao_color = vec3(0.0, 0.0, 1.0); break;
case 3: ao_color = vec3(1.0, 1.0, 1.0); break;
}
f_color = texture(block_texture, v_tex_coord);
f_color.rgb = mix(f_color.rgb, vec3(0.05, 0.05, 0.05), 0.3 * v_ambient_occlusion * distance(v_tile_uv, vec2(0.5)));
}
The "flat" part of this ...
layout(location = 4) in flat uint v_ambient_occlusion;
... means that the same value is used for the whole triangle (taken from the provoking vertex). If you want interpolation between the 3 per-vertex values then just remove the flat qualifier.
Note that currently this is an integer attribute value, which must be flat shaded, so you'll need to convert the input into a float too.

Ray tracing object in the wrong position

I am writing a simple ray shader and I am trying to prodcue a dice with a cube and a number of spheres representing the dots. The spheres are correct, but the sides of the cube are on the x, y and z axes. The cube is centred around 0, 0, 0.
I have checked that the coordinate of the vertices are correct. I am assuming that my ray calculation is correct as the spheres are in the correct positions.
Here is the code for the ray calculation
Ray Image::RayThruPixel(float i, float j)
{
float alpha = m_tanFOVx * ((j - m_halfWidth) / m_halfWidth);
float beta = m_tanFOVy * ((m_halfHeight - i) / m_halfHeight);
vec3 *coordFrame = m_camera.CoordFrame();
vec3 p1 = (coordFrame[U_VEC] * alpha) + (coordFrame[V_VEC] * beta) - coordFrame[W_VEC];
return Ray(m_camera.Eye(), p1);
}
where m_tanFOVx is tan(FOVx / 2) and m_tanFOVy is tan(FOVy / 2) FOVx and FOVy are in radians.
To find the intersection of the ray and triangle my code is as follows:
bool Triangle::Intersection(Ray ray, float &fDistance)
{
static float epsilon = 0.000001;
bool bHit = false;
float fMinDist(10000000);
float divisor = glm::dot(ray.p1, normal);
// if divisor == 0 then the ray is parallel with the triangle
if(divisor > -epsilon && divisor < epsilon)
{
bHit = false;
}
else
{
float t = (glm::dot(v0, normal) - glm::dot(ray.p0, normal)) / divisor;
if(t > 0)
{
vec3 P = ray.p0 + (ray.p1 * t);
vec3 v2 = P - m_vertexA;
v0 = m_vertexB - m_vertexA;
v1 = m_vertexC - m_vertexA;
normal = glm::normalize(glm::cross(v0, v1));
d00 = glm::dot(v0, v0);
d01 = glm::dot(v0, v1);
d11 = glm::dot(v1, v1);
denom = d00 * d11 - d01 * d01;
float d20 = glm::dot(v2, v0);
float d21 = glm::dot(v2, v1);
float alpha = (d11 * d20 - d01 * d21) / denom;
float beta = (d00 * d21 - d01 * d20) / denom;
float gamma = 1.0 - alpha - beta;
vec3 testP = alpha * m_vertexA + beta * m_vertexB + gamma * m_vertexC;
if((alpha >= 0 ) &&
(beta >= 0) &&
(alpha + beta <= 1))
{
bHit = true;
fDistance = t;
}
}
}
return bHit;
}

Resources