How can I use fractions in Idris? - fractions

When I attempt to divide one integer by another, I get the following message:
Idris> 6 / 8
Can't find implementation for Fractional Integer
What exactly does this mean? How can I use rational numbers in Idris?

Idris does not have a built-in type for rational numbers. The error message you are seeing means that the (/) function, which is a method of the Fractional interface, requires that its arguments be of a type that implements that interface; however, the only type that currently implements the Fractional interface is Double:
Idris> :doc Fractional
Interface Fractional
Parameters:
ty
Constraints:
Num ty
Methods:
(/) : Fractional ty => ty -> ty -> ty
infixl 9
The function is Total
recip : Fractional ty => ty -> ty
The function is Total
Implementations:
Fractional Double

Related

How can a instance with Num type class coercion to Fractional implicitly?

I tested the numeric coercion by using GHCI:
>> let c = 1 :: Integer
>> 1 / 2
0.5
>> c / 2
<interactive>:15:1: error:
• No instance for (Fractional Integer) arising from a use of ‘/’
• In the expression: c / 2
In an equation for ‘it’: it = c / 2
>> :t (/)
(/) :: Fractional a => a -> a -> a -- (/) needs Fractional type
>> (fromInteger c) / 2
0.5
>>:t fromInteger
fromInteger :: Num a => Integer -> a -- Just convert the Integer to Num not to Fractional
I can use fromInteger function to convert a Integer type to Num (fromInteger has the type fromInteger :: Num a => Integer -> a), but I cannot understand that how can the type Num be converted to Fractional implicitly?
I know that if an instance has type Fractional it must have type Num (class Num a => Fractional a where), but does it necessary that if an instance has type Num it can be used as an instance with Fractional type?
#mnoronha Thanks for your detailed reply. There is only one question confuse me. I know the reason that type a cannot be used in function (/) is that type a is with type Integer which is not an instance of type class Fractional (the function (/) requires that the type of arguments must be instance of Fractional). What I don't understand is that even by calling fromInteger to convert the type integer to atype which be an instance of Num, it does not mean a type be an instance of Fractional (because Fractional type class is more constrained than Num type class, so a type may not implement some functions required by Fractional type class). If a type does not fully fit the condition Fractional type class requires, how can it be use in the function (/) which asks the arguments type be instance of Fractional. Sorry for not native speaker and really thanks for your patience!
I tested that if a type only fits the parent type class, it cannot be used in a function which requires more constrained type class.
{-# LANGUAGE OverloadedStrings #-}
module Main where
class ParentAPI a where
printPar :: int -> a -> String
class (ParentAPI a) => SubAPI a where
printSub :: a -> String
data ParentDT = ParentDT Int
instance ParentAPI ParentDT where
printPar i p = "par"
testF :: (SubAPI a) => a -> String
testF a = printSub a
main = do
let m = testF $ ParentDT 10000
return ()
====
test-typeclass.hs:19:11: error:
• No instance for (SubAPI ParentDT) arising from a use of ‘testF’
• In the expression: testF $ ParentDT 10000
In an equation for ‘m’: m = testF $ ParentDT 10000
In the expression:
do { let m = testF $ ParentDT 10000;
return () }
I have found a doc explaining the numeric overloading ambiguity very clearly and may help others with the same confusion.
https://www.haskell.org/tutorial/numbers.html
First, note that both Fractional and Num are not types, but type classes. You can read more about them in the documentation or elsewhere, but the basic idea is that they define behaviors for types. Num is the most inclusive numeric typeclass, defining behaviors functions like (+), negate, which are common to pretty much all "numeric types." Fractional is a more constrained type class that describes "fractional numbers, supporting real division."
If we look at the type class definition for Fractional, we see that it is actually defined as a subclass of Num. That is, for a type a to be an have an instance Fractional, it must first be a member of the typeclass Num:
class Num a => Fractional a where
Let's consider some type that is constrained by Fractional. We know it implements the basic behaviors common to all members of Num. However, we can't expect it to implement behaviors from other type classes unless multiple constraints are specified (ex. (Num a, Ord a) => a. Take, for example, the function div :: Integral a => a -> a -> a (integral division). If we try to apply the function with an argument that is constrained by the typeclass Fractional (ex. 1.2 :: Fractional t => t), we encounter an error. Type classes restrict the sort of values a function deals with, allowing us to write more specific and useful functions for types that share behaviors.
Now let's look at the more general typeclass, Num. If we have a type variable a that is only constrained by Num a => a, we know that it will implement the (few) basic behaviors included in the Num type class definition, but we'd need more context to know more. What does this mean practically? We know from our Fractional class declaration that functions defined in the Fractional type class are applied to Num types. However, these Num types are a subset of all possible Num types.
The importance of all this, ultimately, has to do with the ground types (where type class constraints are most commonly seen in functions). a represents a type, with the notation Num a => a telling us that a is a type that includes an instance of the type class Num. a could be any of the types that include the instance (ex. Int, Natural). Thus, if we give a value a general type Num a => a, we know it can implement functions for every type where there is a type class defined. For example:
ghci>> let a = 3 :: (Num a => a)
ghci>> a / 2
1.5
Whereas if we'd defined a as a specific type or in terms of a more constrained type class, we would have not been able to expect the same results:
ghci>> let a = 3 :: Integral a => a
ghci>> a / 2
-- Error: ambiguous type variable
or
ghci>> let a = 3 :: Integer
ghci>> a / 2
-- Error: No instance for (Fractional Integer) arising from a use of ‘/’
(Edit responding to followup question)
This is definitely not the most concrete explanation, so readers feel free to suggest something more rigorous.
Suppose we have a function a that is just a type class constrained version of the id function:
a :: Num a => a -> a
a = id
Let's look at type signatures for some applications of the function:
ghci>> :t (a 3)
(a 3) :: Num a => a
ghci>> :t (a 3.2)
(a 3.2) :: Fractional a => a
While our function had the general type signature, as a result of its application the the type of the application is more restricted.
Now, let's look at the function fromIntegral :: (Num b, Integral a) => a -> b. Here, the return type is the general Num b, and this will be true regardless of input. I think the best way to think of this difference is in terms of precision. fromIntegral takes a more constrained type and makes it less constrained, so we know we'll always expect the result will be constrained by the type class from the signature. However, if we give an input constraint, the actual input could be more restricted than the constraint and the resulting type would reflect that.
The reason why this works comes down to the way universal quantification works. To help explain this I am going to add in explicit forall to the type signatures (which you can do yourself if you enable -XExplicitForAll or any other forall related extension), but if you just removed them (forall a. ... becomes just ...), everything will work fine.
The thing to remember is that when a function involves a type constrained by a typeclass, then what that means is that you can input/output ANY type within that typeclass, so it's actually better to have a less constrained typeclass.
So:
fromInteger :: forall a. Num a => Integer -> a
fromInteger 5 :: forall a. Num a => a
Means that you have a value that is of EVERY Num type. So not only can you use it in a function taking it in a Fractional, you could use it in a function that only takes in MyWeirdTypeclass a => ... as long as there is one single type that implements both Num and MyWeirdTypeclass. Hence why you can get the following just fine:
fromInteger 5 / 2 :: forall a. Fractional a => a
Now of course once you decide to divide by 2, it now wants the output type to be Fractional, and thus 5 and 2 will be interpreted as some Fractional type, so we won't run into issues where we try to divide Int values, as trying to make the above have type Int will fail to type check.
This is really powerful and awesome, but very much unfamiliar, as generally other languages either don't support this, or only support it for input arguments (e.g print in most languages can take in any printable type).
Now you may be curious when the whole superclass / subclass stuff comes into play, so when you are defining a function that takes in something of type Num a => a, then because a user can pass in ANY Num type, you are correct that in this situation you cannot use functions defined on some subclass of Num, only things that work on ALL Num values, like *:
double :: forall a. Num a => a -> a
double n = n * 2 -- in here `n` really has type `exists a. Num a => a`
So the following does not type check, and it wouldn't type check in any language, because you don't know that the argument is a Fractional.
halve :: Num a => a -> a
halve n = n / 2 -- in here `n` really has type `exists a. Num a => a`
What we have up above with fromInteger 5 / 2 is more equivalent to the following, higher rank function, note that the forall within parenthesis is required, and you need to use -XRankNTypes:
halve :: forall b. Fractional b => (forall a. Num a => a) -> b
halve n = n / 2 -- in here `n` has type `forall a. Num a => a`
Since this time you are taking in EVERY Num type (just like the fromInteger 5 you were dealing with before), not just ANY Num type. Now the downside of this function (and one reason why no one wants it) is that you really do have to pass in something of EVERY Num type:
halve (2 :: Int) -- does not work
halve (3 :: Integer) -- does not work
halve (1 :: Double) -- does not work
halve (4 :: Num a => a) -- works!
halve (fromInteger 5) -- also works!
I hope that clears things up a little. All you need for the fromInteger 5 / 2 to work is that there exists ONE single type that is both a Num and a Fractional, or in other words just a Fractional, since Fractional implies Num. Type defaulting doesn't help much with clearing up this confusion, as what you may not realize is that GHC is just arbitrarily picking Double, it could have picked any Fractional.

No instance for (Floating Integer) arising from a use of '**'?

I have the following Haskell code:
two :: Integer -> Integer
two i = toInteger(2 ** i)
Why isn't it working?
(**) requires floating point input based on the function signature:
(**) :: Floating a => a -> a -> a
toInteger on the other hand requires input that is integral in nature:
toInteger :: Integral a => a -> Integer
Therefore, you cannot reconcile the two the way you use it. That said, since you seem to be expecting integer input anyway, you might consider using (^) instead, like so:
two :: Integer -> Integer
two i = 2 ^ i
As #leftaroundabout correctly points out in the comments, (^) will fail for negative values of i. This can be resolved by checking for value and handling in an alternate manner, something like this:
two :: Integer -> Integer
two i = if i > 0 then 2 ^ i else floor (2 ** fromIntegral i)
Use ^ instead:
two i = 2 ^ i
And then there is no need for to cast the result back to an Integral type.
The reason this...
two :: Integer -> Integer
two i = toInteger(2 ** i)
...doesn't work is because you've declared i to be an integer, and if we look at the type of (**)...
Prelude> :t (**)
(**) :: Floating a => a -> a -> a
... all it's arguments are of the same type, and that type has to be an instance of the Floating type-class. Integer is not an instance of Floating. This is what "No instance of (Floating Integer)" means.
The simplest solution is to use ^ as ErikR suggests. It raises a number to an integral power.
(^) :: (Integral b, Num a) => a -> b -> a
If you want to work through using ** to learn a bit more, keep reading.
So we need to convert your integer into a type which is an instance of Floating. You can do this with fromIntegral. If we do this:
two :: Integer -> Integer
two i = toInteger(2 ** fromIntegral(i))
...we still get a load of error messages complaining that various types are ambiguous. These aren't as clear as the first message, but the issue is the use of toInteger which becomes apparent if we look at it's type.
Prelude> :t toInteger
toInteger :: Integral a => a -> Integer
As we're passing the result of ** to toInteger, and that is a Floating, not an Integral, toInteger is the wrong function. round is a better choice.
two :: Integer -> Integer
two i = round(2 ** fromIntegral(i))
This now works.

Assigning "bare" numbers to newtypes

Note the second line in this GHCi session. What is it about the Latitude type that allows me to use a "bare" number as a value, instead of having to invoke a constructor? I would like to do something similar with some of my own types.
λ> :m + Data.Geo.GPX.Type.Latitude
λ> let t = 45 :: Latitude
λ> t
45.0
I've examined the source code for the Latitude type, but I had trouble figuring it out at first. Eventually I found the answer, so I thought I'd document it here. See my answer below.
What makes this work is that the type is a Num. The easiest way to do that is to use "deriving Num", in which case I need the language pragma GeneralizedNewtypeDeriving. So I can create a type like the following,
newtype Seconds = Seconds Double deriving (Eq, Ord, Enum, Num, Fractional, Floating, Real, RealFrac, RealFloat, Show)
And then in GHCi,
λ> let s = 5 :: Seconds
λ> s
Seconds 5.0
Alternatively, I could explicitly implement Num.
According to the Haskell98 standard, numeric literals are actually calls to fromInteger and fromRational. This allows them to be converted to any type that implements those functions (fromInteger is in the Prelude.Num typeclass and fromRational is in the Prelude.Fractional typeclass).
The syntax of numeric literals is given in Section 2.5. An integer
literal represents the application of the function fromInteger to the
appropriate value of type Integer. Similarly, a floating literal
stands for an application of fromRational to a value of type Rational
(that is, Ratio Integer). Given the typings:
fromInteger :: (Num a) => Integer -> a
fromRational :: (Fractional a) => Rational -> a
integer and floating literals have the typings (Num a) => a and
(Fractional a) => a, respectively. Numeric literals are defined in
this indirect way so that they may be interpreted as values of any
appropriate numeric type. See Section 4.3.4 for a discussion of
overloading ambiguity.
http://www.haskell.org/onlinereport/basic.html#numeric-literals

I don't understand number conversions in Haskell

Here is what I'm trying to do:
isPrime :: Int -> Bool
isPrime x = all (\y -> x `mod` y /= 0) [3, 5..floor(sqrt x)]
(I know I'm not checking for division by two--please ignore that.)
Here's what I get:
No instance for (Floating Int)
arising from a use of `sqrt'
Possible fix: add an instance declaration for (Floating Int)
In the first argument of `floor', namely `(sqrt x)'
In the expression: floor (sqrt x)
In the second argument of `all', namely `[3, 5 .. floor (sqrt x)]'
I've spent literally hours trying everything I can think of to make this list using some variant of sqrt, including nonsense like
intSqrt :: Int -> Int
intSqrt x = floor (sqrt (x + 0.0))
It seems that (sqrt 500) works fine but (sqrt x) insists on x being a Floating (why?), and there is no function I can find to convert an Int to a real (why?).
I don't want a method to test primality, I want to understand how to fix this. Why is this so hard?
Unlike most other languages, Haskell distinguishes strictly between integral and floating-point types, and will not convert one to the other implicitly. See here for how to do the conversion explicitly. There's even a sqrt example :-)
The underlying reason for this is that the combination of implicit conversions and Haskel's (rather complex but very cool) class system would make type reconstruction very difficult -- probably it would stretch it beyond the point where it can be done by machines at all. The language designers felt that getting type classes for arithmetic was worth the cost of having to specify conversions explicitly.
Your issue is that, although you've tried to fix it in a variety of ways, you haven't tried to do something x, which is exactly where your problem lies. Let's look at the type of sqrt:
Prelude> :t sqrt
sqrt :: (Floating a) => a -> a
On the other hand, x is an Int, and if we ask GHCi for information about Floating, it tells us:
Prelude> :info Floating
class (Fractional a) => Floating a where
pi :: a
<...snip...>
acosh :: a -> a
-- Defined in GHC.Float
instance Floating Float -- Defined in GHC.Float
instance Floating Double -- Defined in GHC.Float
So the only types which are Floating are Floats and Doubles. We need a way to convert an Int to a Double, much as floor :: (RealFrac a, Integral b) => a -> b goes the other direction. Whenever you have a type question like this, you can ask Hoogle, a Haskell search engine which searches types. Unfortunately, if you search for Int -> Double, you get lousy results. But what if we relax what we're looking for? If we search for Integer -> Double, we find that there's a function fromInteger :: Num a => Integer -> a, which is almost exactly what you want. And if we relax our type all the way to (Integral a, Num b) => a -> b, you find that there is a function fromIntegral :: (Integral a, Num b) => a -> b.
Thus, to compute the square root of an integer, use floor . sqrt $ fromIntegral x, or use
isqrt :: Integral i => i -> i
isqrt = floor . sqrt . fromIntegral
You were thinking about the problem in the right direction for the output of sqrt; it returned a floating-point number, but you wanted an integer. In Haskell, however, there's no notion of subtyping or implicit casts, so you need to alter the input to sqrt as well.
To address some of your other concerns:
intSqrt :: Int -> Int
intSqrt x = floor (sqrt (x + 0.0))
You call this "nonsense", so it's clear you don't expect it to work, but why doesn't it? Well, the problem is that (+) has type Num a => a -> a -> a—you can only add two things of the same type. This is generally good, since it means you can't add a complex number to a 5×5 real matrix; however, since 0.0 must be an instance of Fractional, you won't be able to add it to x :: Int.
It seems that (sqrt 500) works fine…
This works because the type of 500 isn't what you expect. Let's ask our trusty companion GHCi:
Prelude> :t 500
500 :: (Num t) => t
In fact, all integer literals have this type; they can be any sort of number, which works because the Num class contains the function fromInteger :: Integer -> a. So when you wrote sqrt 500, GHC realized that 500 needed to satisfy 500 :: (Num t, Floating t) => t (and it will implicitly pick Double for numeric types like that thank to the defaulting rules). Similarly, the 0.0 above has type Fractional t => t, thanks to Fractional's fromRational :: Rational -> a function.
… but (sqrt x) insists on x being a Floating …
See above, where we look at the type of sqrt.
… and there is no function I can find to convert an Int to a real ….
Well, you have one now: fromIntegral. I don't know why you couldn't find it; apparently Hoogle gives much worse results than I was expecting, thanks to the generic type of the function.
Why is this so hard?
I hope it isn't anymore, now that you have fromIntegral.

Exponentiation in Haskell

Can someone tell me why the Haskell Prelude defines two separate functions for exponentiation (i.e. ^ and **)? I thought the type system was supposed to eliminate this kind of duplication.
Prelude> 2^2
4
Prelude> 4**0.5
2.0
There are actually three exponentiation operators: (^), (^^) and (**). ^ is non-negative integral exponentiation, ^^ is integer exponentiation, and ** is floating-point exponentiation:
(^) :: (Num a, Integral b) => a -> b -> a
(^^) :: (Fractional a, Integral b) => a -> b -> a
(**) :: Floating a => a -> a -> a
The reason is type safety: results of numerical operations generally have the same type as the input argument(s). But you can't raise an Int to a floating-point power and get a result of type Int. And so the type system prevents you from doing this: (1::Int) ** 0.5 produces a type error. The same goes for (1::Int) ^^ (-1).
Another way to put this: Num types are closed under ^ (they are not required to have a multiplicative inverse), Fractional types are closed under ^^, Floating types are closed under **. Since there is no Fractional instance for Int, you can't raise it to a negative power.
Ideally, the second argument of ^ would be statically constrained to be non-negative (currently, 1 ^ (-2) throws a run-time exception). But there is no type for natural numbers in the Prelude.
Haskell's type system isn't powerful enough to express the three exponentiation operators as one. What you'd really want is something like this:
class Exp a b where (^) :: a -> b -> a
instance (Num a, Integral b) => Exp a b where ... -- current ^
instance (Fractional a, Integral b) => Exp a b where ... -- current ^^
instance (Floating a, Floating b) => Exp a b where ... -- current **
This doesn't really work even if you turn on the multi-parameter type class extension, because the instance selection needs to be more clever than Haskell currently allows.
It doesn't define two operators -- it defines three! From the Report:
There are three two-argument exponentiation operations: (^) raises any number to a nonnegative integer power, (^^) raises a fractional number to any integer power, and (**) takes two floating-point arguments. The value of x^0 or x^^0 is 1 for any x, including zero; 0**y is undefined.
This means there are three different algorithms, two of which give exact results (^ and ^^), while ** gives approximate results. By choosing which operator to use, you choose which algorithm to invoke.
^ requires its second argument to be an Integral. If I'm not mistaken, the implementation can be more efficient if you know you are working with an integral exponent. Also, if you want something like 2 ^ (1.234), even though your base is an integral, 2, your result will obviously be fractional. You have more options so that you can have more tight control over what types are going in and out of your exponentiation function.
Haskell's type system does not have the same goal as other type systems, such as C's, Python's, or Lisp's. Duck typing is (nearly) the opposite of the Haskell mindset.

Resources