Related
I want to find the optimal number of neurons and layers for a LSTM model and I have created the following:
def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[20,11]):
model = keras.models.Sequential()
options = {"input_shape": input_shape}
for layer in range(n_hidden):
model.add(keras.layers.Dense(n_neurons, activation="swish", **options))
options = {}
model.add(keras.layers.Dense(10, **options))
#optimizer = keras.optimizers.SGD(learning_rate)
model.compile(loss="mse", optimizer='adam')
return model
keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model)
from scipy.stats import reciprocal
from sklearn.model_selection import RandomizedSearchCV
param_distribs = {
"n_hidden": [0, 1, 2, 3],
"n_neurons": np.arange(1, 100),
#"learning_rate": reciprocal(3e-4, 3e-2),
}
rnd_search_cv = RandomizedSearchCV(keras_reg, param_distribs, n_iter=10)
rnd_search_cv.fit(x_tr, y_tr , epochs=100,
callbacks=[keras.callbacks.EarlyStopping(patience=10)])
The dataset used is composed of 11 features and in this model it looks for the 20-in previous times steps and aims to predict the following 10 time steps. When I run the following code I have the following error:
> /home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_validation.py:372: FitFailedWarning:
50 fits failed out of a total of 50.
The score on these train-test partitions for these parameters will be set to nan.
If these failures are not expected, you can try to debug them by setting error_score='raise'.
Below are more details about the failures:
> --------------------------------------------------------------------------------
1 fits failed with the following error:
Traceback (most recent call last):
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 680, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/wrappers/scikit_learn.py", line 175, in fit
history = self.model.fit(x, y, **fit_args)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/home/use/anaconda3/lib/python3.9/site-packages/tensorflow/python/eager/execute.py", line 52, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:
Detected at node 'gradient_tape/mean_squared_error/BroadcastGradientArgs' defined at (most recent call last):
File "/home/use/anaconda3/lib/python3.9/runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/use/anaconda3/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel_launcher.py", line 17, in <module>
app.launch_new_instance()
File "/home/use/anaconda3/lib/python3.9/site-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/kernelapp.py", line 712, in start
self.io_loop.start()
File "/home/use/anaconda3/lib/python3.9/site-packages/tornado/platform/asyncio.py", line 199, in start
self.asyncio_loop.run_forever()
File "/home/use/anaconda3/lib/python3.9/asyncio/base_events.py", line 601, in run_forever
self._run_once()
File "/home/use/anaconda3/lib/python3.9/asyncio/base_events.py", line 1905, in _run_once
handle._run()
File "/home/use/anaconda3/lib/python3.9/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
await self.process_one()
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 499, in process_one
await dispatch(*args)
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
await result
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 730, in execute_request
reply_content = await reply_content
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/ipkernel.py", line 390, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/use/anaconda3/lib/python3.9/site-packages/ipykernel/zmqshell.py", line 528, in run_cell
return super().run_cell(*args, **kwargs)
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 2914, in run_cell
result = self._run_cell(
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 2960, in _run_cell
return runner(coro)
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/async_helpers.py", line 78, in _pseudo_sync_runner
coro.send(None)
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3185, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3377, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "/home/use/anaconda3/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3457, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "/tmp/ipykernel_10055/1251208469.py", line 9, in <module>
rnd_search_cv.fit(x_tr, y_tr , epochs=100,
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_search.py", line 891, in fit
self._run_search(evaluate_candidates)
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_search.py", line 1766, in _run_search
evaluate_candidates(
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_search.py", line 838, in evaluate_candidates
out = parallel(
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/parallel.py", line 1043, in __call__
if self.dispatch_one_batch(iterator):
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/parallel.py", line 861, in dispatch_one_batch
self._dispatch(tasks)
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/parallel.py", line 779, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/use/anaconda3/lib/python3.9/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/utils/fixes.py", line 216, in __call__
return self.function(*args, **kwargs)
File "/home/use/anaconda3/lib/python3.9/site-packages/sklearn/model_selection/_validation.py", line 680, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/wrappers/scikit_learn.py", line 175, in fit
history = self.model.fit(x, y, **fit_args)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1650, in fit
tmp_logs = self.train_function(iterator)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1249, in train_function
return step_function(self, iterator)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1233, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1222, in run_step
outputs = model.train_step(data)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1027, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 526, in minimize
grads_and_vars = self.compute_gradients(loss, var_list, tape)
File "/home/use/anaconda3/lib/python3.9/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 259, in compute_gradients
grads = tape.gradient(loss, var_list)
Node: 'gradient_tape/mean_squared_error/BroadcastGradientArgs'
Incompatible shapes: [32,20,10] vs. [32,10]
[[{{node gradient_tape/mean_squared_error/BroadcastGradientArgs}}]] [Op:__inference_train_function_1033752]
I am trying to create a custom loss function in tensorflow. I am using tensorflow v2.0.rc0 for running the code. Following is the code and the function min_dist_loss computes the pairwise loss between the output of the neural network. Here's the code
def min_dist_loss(_, y_pred):
distances = []
for i in range(0, 16):
for j in range(i + 1, 16):
distances.append(tf.linalg.norm(y_pred[i] - y_pred[j]))
return -tf.reduce_min(distances)
and the module is being initialized and compiled as follows
import tensorflow as tf
from tensorboard.plugins.hparams import api as hp
HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([6, 7]))
HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['adam', 'sgd']))
METRIC_ACCURACY = 'accuracy'
with tf.summary.create_file_writer('logs\hparam_tuning').as_default():
hp.hparams_config(
hparams=[HP_NUM_UNITS, HP_OPTIMIZER],
metrics=[hp.Metric(METRIC_ACCURACY, display_name='Accuracy')]
)
def train_test_model(logdir, hparams):
weight1 = np.random.normal(loc=0.0, scale=0.01, size=[4, hparams[HP_NUM_UNITS]])
init1 = tf.constant_initializer(weight1)
weight2 = np.random.normal(loc=0.0, scale=0.01, size=[hparams[HP_NUM_UNITS], 7])
init2 = tf.constant_initializer(weight2)
model = tf.keras.models.Sequential([
# tf.keras.layers.Flatten(),
tf.keras.layers.Dense(hparams[HP_NUM_UNITS], activation=tf.nn.sigmoid, kernel_initializer=init1),
tf.keras.layers.Dense(7, activation=tf.nn.sigmoid, kernel_initializer=init2) if hparams[HP_NUM_UNITS] == 6 else
None,
])
model.compile(
optimizer=hparams[HP_OPTIMIZER],
loss=min_dist_loss,
# metrics=['accuracy'],
)
x_train = [list(k) for k in itertools.product([0, 1], repeat=4)]
shuffle(x_train)
x_train = 2 * np.array(x_train) - 1
model.fit(
x_train, epochs=1, batch_size=16,
callbacks=[
tf.keras.callbacks.TensorBoard(logdir),
hp.KerasCallback(logdir, hparams)
],
)
Now since the tensor object y_pred in the min_dist_loss is an object of shape [?, 7], indexing with i is throwing the following error:
Traceback (most recent call last):
File "/home/pc/Documents/user/code/keras_tensorflow/src/try1.py", line 95, in <module>
run('logs\hparam_tuning' + run_name, hparams)
File "/home/pc/Documents/user/code/keras_tensorflow/src/try1.py", line 78, in run
accuracy = train_test_model(run_dir, hparams)
File "/home/pc/Documents/user/code/keras_tensorflow/src/try1.py", line 66, in train_test_model
hp.KerasCallback(logdir, hparams)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 734, in fit
use_multiprocessing=use_multiprocessing)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 324, in fit
total_epochs=epochs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 123, in run_one_epoch
batch_outs = execution_function(iterator)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 86, in execution_function
distributed_function(input_fn))
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py", line 427, in __call__
self._initialize(args, kwds, add_initializers_to=initializer_map)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py", line 370, in _initialize
*args, **kwds))
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py", line 1847, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py", line 2147, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py", line 2038, in _create_graph_function
capture_by_value=self._capture_by_value),
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/framework/func_graph.py", line 915, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py", line 320, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 73, in distributed_function
per_replica_function, args=(model, x, y, sample_weights))
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 760, in experimental_run_v2
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 1787, in call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/distribute/distribute_lib.py", line 2132, in _call_for_each_replica
return fn(*args, **kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/autograph/impl/api.py", line 292, in wrapper
return func(*args, **kwargs)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 264, in train_on_batch
output_loss_metrics=model._output_loss_metrics)
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_eager.py", line 311, in train_on_batch
output_loss_metrics=output_loss_metrics))
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_eager.py", line 252, in _process_single_batch
training=training))
File "/home/pc/Documents/user/code/keras_tensorflow/venv/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_eager.py", line 166, in _model_loss
per_sample_losses = loss_fn.call(targets[i], outs[i])
IndexError: list index out of range
How do I compute the minimum distance in this setting? Any help is appreciated. Also, if there are any errors in other parts of the code, please feel free to point it out. I am new to using keras on tensorflow.
Keras is expecting you to provide the true labels as well. Since you're defining your own loss function and you're not using the true labels, you can pass some garbage labels. Eg: np.arange(16).
Change your model.fit as below and it should work
model.fit(
x_train, np.arange(x_train.shape[0]), epochs=1, batch_size=16,
callbacks=[
tf.keras.callbacks.TensorBoard(logdir),
hp.KerasCallback(logdir, hparams)
],
)
I cannot run my code in Google Colaboratory twice without restarting runtime. Is there a way to run it without restarting runtime.
My code takes TensorD libraries and compute aproximation of a random 2x4x4 tensor using CP ALS algorithm. (this is an example taken from https://github.com/Large-Scale-Tensor-Decomposition/tensorD)
!git clone https://github.com/Large-Scale-Tensor-Decomposition/tensorD.git
import sys
import time
sys.path.append("/content/tensorD")
from tensorD.factorization.env import Environment
from tensorD.dataproc.provider import Provider
from tensorD.demo.DataGenerator import *
from tensorD.factorization.cp import CP_ALS
# generate a random tensor with shape 3x4x4
t = time.time()
X = synthetic_data_cp([3, 4, 4], 7)
data_provider = Provider()
data_provider.full_tensor = lambda: X
env = Environment(data_provider, summary_path='/tmp/cp_' + '7')
cp = CP_ALS(env)
args = CP_ALS.CP_Args(rank=7, validation_internal=1)
# build CP model with arguments
cp.build_model(args)
# train CP model with the maximum iteration of 100
cp.train(50)
# obtain factor matrices from trained model
factor_matrices = cp.factors
# obtain scaling vector from trained model
lambdas = cp.lambdas
for matrix in factor_matrices:
print(matrix)
elapsed = time.time() - t
print(elapsed)
when I run it first time I have no problem. When I run it again (without restart of runtime) I obtain:
CP model initial finish
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1333 try:
-> 1334 return fn(*args)
1335 except errors.OpError as e:
7 frames
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [3,4,4]
[[{{node Placeholder}}]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1346 pass
1347 message = error_interpolation.interpolate(message, self._graph)
-> 1348 raise type(e)(node_def, op, message)
1349
1350 def _extend_graph(self):
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [3,4,4]
[[node Placeholder (defined at /content/tensorD/tensorD/factorization/cp.py:69) ]]
Caused by op 'Placeholder', defined at:
File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.6/dist-packages/traitlets/config/application.py", line 658, in launch_instance
app.start()
File "/usr/local/lib/python3.6/dist-packages/ipykernel/kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "/usr/local/lib/python3.6/dist-packages/tornado/ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "/usr/local/lib/python3.6/dist-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.6/dist-packages/ipykernel/ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.6/dist-packages/ipykernel/zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-4-4d2250ec007b>", line 21, in <module>
cp.build_model(args)
File "/content/tensorD/tensorD/factorization/cp.py", line 69, in build_model
input_data = tf.placeholder(tf.float32, shape=self._env.full_shape())
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_ops.py", line 2077, in placeholder
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 5791, in placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
op_def=op_def)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 1801, in __init__
self._traceback = tf_stack.extract_stack()
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [3,4,4]
[[node Placeholder (defined at /content/tensorD/tensorD/factorization/cp.py:69) ]]
Any help will be appreciated!
This seems to mostly be a question about TensorFlow. Do you get what you want outside of Colab? I'm not totally clear about what you are expecting, but import tensorflow as tf; tf.reset_default_graph() at the top of your snippet seems sensible and squelches the error.
I had the same issue but when I tried to apply the same fix I have run into another error. I am however running on 5 gpus. I have read that you need to make sure that your samples are divisible by both the batch sive and number of gpus but I have done that. I have scoured the internet for days and am unable to find anything that has been able to fix the issue I am having. I am running keras v2.0.9 and tensor flow v1.1.0
VARIABLES:
attributeTables[0] is a numpy array shape (35560, 700)
y is a numpy array shape (35560, ) I have also tried using shape (35560, 1) for y but all that happens is the "Incompatible shapes: [2540] vs. [508]" changes from that to "Incompatible shapes: [2540, 1] vs. [508, 1]"
So this says to me that the issue is only with the targetsand that the expected batch size is getting multiplied somewhere in the middle of the process only for the targets and not for attributes causing a mismatch or at least only durring validation I'm not sure.
Here is the code and error in question.
import numpy as np
from keras.models import Sequential
from keras.utils import multi_gpu_model
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
def baseline_model():
# create model
print("Building Layers")
model = Sequential()
model.add(LSTM(700, batch_input_shape=(batchSize, X.shape[1], X.shape[2]), activation='tanh', return_sequences=False, stateful=True))
model.add(Dense(1))
print("Building Parallel model")
parallel_model = multi_gpu_model(model, gpus=nGPU)
# Compile model
#model.compile(loss='mean_squared_error', optimizer='adam')
print("Compiling Model")
parallel_model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
return parallel_model
def buildModel():
print("Bulding Model")
mlp = baseline_model()
print("Fitting Model")
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
print("Scaling")
scaler = StandardScaler()
X_Scaled = scaler.fit_transform(attributeTables[0])
print("Finding Batch Size")
nGPU = 5
batchSize = 500
while len(X_Scaled) % (batchSize * nGPU) != 0:
batchSize += 1
print("Filling Arrays")
X = X_Scaled.reshape((X_Scaled.shape[0], X_Scaled.shape[1], 1))
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=.8)
print("Calling buildModel()")
model = buildModel()
print("Ploting History")
plt.plot(model.history['loss'], label='train')
plt.plot(model.history['val_loss'], label='test')
plt.legend()
plt.show()
Here is my complete output.
Beginning OHLC Load
Time took : 7.571000099182129
Making gloabal copies
Time took : 0.0
Using TensorFlow backend.
Scaling
Finding Batch Size
Filling Arrays
Calling buildModel()
Bulding Model
Building Layers
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:2010: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
Building Parallel model
Compiling Model
Fitting Model
Train on 28448 samples, validate on 7112 samples
Epoch 1/1
Traceback (most recent call last):
File "<ipython-input-2-74c49f05bfbc>", line 1, in <module>
runfile('C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py', wdir='C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor')
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 57, in buildModel
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1631, in fit
validation_steps=validation_steps)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1213, in _fit_loop
outs = f(ins_batch)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2332, in __call__
**self.session_kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 778, in run
run_metadata_ptr)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 982, in _run
feed_dict_string, options, run_metadata)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1032, in _do_run
target_list, options, run_metadata)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1052, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: Incompatible shapes: [2540,1] vs. [508,1]
[[Node: training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _class=["loc:#loss/concatenate_1_loss/sub"], _device="/job:localhost/replica:0/task:0/gpu:0"](training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape, training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape_1)]]
[[Node: replica_1/sequential_1/dense_1/BiasAdd/_313 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:1", send_device_incarnation=1, tensor_name="edge_1355_replica_1/sequential_1/dense_1/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op 'training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs', defined at:
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 245, in <module>
main()
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in main
kernel.start()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 832, in start
self._run_callback(self._callbacks.popleft())
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 605, in _run_callback
ret = callback()
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 265, in enter_eventloop
self.eventloop(self)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 106, in loop_qt5
return loop_qt4(kernel)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 99, in loop_qt4
_loop_qt(kernel.app)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 83, in _loop_qt
app.exec_()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 39, in process_stream_events
kernel.do_one_iteration()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 298, in do_one_iteration
stream.flush(zmq.POLLIN, 1)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 352, in flush
self._handle_recv()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-74c49f05bfbc>", line 1, in <module>
runfile('C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py', wdir='C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor')
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 57, in buildModel
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1608, in fit
self._make_train_function()
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 990, in _make_train_function
loss=self.total_loss)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\optimizers.py", line 415, in get_updates
grads = self.get_gradients(loss, params)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\optimizers.py", line 73, in get_gradients
grads = K.gradients(loss, params)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2369, in gradients
return tf.gradients(loss, variables, colocate_gradients_with_ops=True)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 560, in gradients
grad_scope, op, func_call, lambda: grad_fn(op, *out_grads))
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 368, in _MaybeCompile
return grad_fn() # Exit early
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 560, in <lambda>
grad_scope, op, func_call, lambda: grad_fn(op, *out_grads))
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_grad.py", line 609, in _SubGrad
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 411, in _broadcast_gradient_args
name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
...which was originally created as op 'loss/concatenate_1_loss/sub', defined at:
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 245, in <module>
main()
[elided 27 identical lines from previous traceback]
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 55, in buildModel
mlp = baseline_model()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 29, in baseline_model
parallel_model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 860, in compile
sample_weight, mask)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 460, in weighted
score_array = fn(y_true, y_pred)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py", line 13, in mean_absolute_error
return K.mean(K.abs(y_pred - y_true), axis=-1)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 821, in binary_op_wrapper
return func(x, y, name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 2627, in _sub
result = _op_def_lib.apply_op("Sub", x=x, y=y, name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Incompatible shapes: [2540,1] vs. [508,1]
[[Node: training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _class=["loc:#loss/concatenate_1_loss/sub"], _device="/job:localhost/replica:0/task:0/gpu:0"](training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape, training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape_1)]]
[[Node: replica_1/sequential_1/dense_1/BiasAdd/_313 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:1", send_device_incarnation=1, tensor_name="edge_1355_replica_1/sequential_1/dense_1/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Daniel Moller's link was right when i disabled the parallel model and put it on one GPU the stateful worked no ptoblem. Currently waiting on it to train. Will post results.
I just published an experimental utility, stateful_multi_gpu, to handle stateful model training of multiple GPUs. I'm interested to know if it is of use to you.
Please also see my answer for the same question Daniel Möller referred to.
I have a dataset of shape (10000, 128) (samples= 10,000, and features=128) where the class labels are binary. I want to use RNN for model training using Keras library. I wrote the following code:
tr_C, ts_C, tr_r, ts_r = train_test_split(C, r, train_size=.8)
batch_size = 32
print('Build STATEFUL model...')
model = Sequential()
model.add(LSTM(64, (batch_size, C.shape[0], C.shape[1]), return_sequences=False, stateful=True))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print('Training...')
model.fit(tr_C, ts_r,
batch_size=batch_size, epochs=1, shuffle=False,
validation_data=(ts_C, ts_r))
But I get this error:
ValueError: Error when checking input: expected lstm_1_input to have 3 dimensions, but got array with shape (8000, 128)
I don't understand this error. How can I fix it?
Thank you
You need to do following steps:
Reshape C by:
C = C.reshape((c.shape[0], c.shape[1], 1))
Adjust LSTM layer:
model.add(LSTM(64, (batch_size, C.shape[1], C.shape[2]), return_sequences=False, stateful=True))
I had the same issue but when I tried to apply the same fix I have run into another error. I am however running on 5 gpus. I have read that you need to make sure that your samples are divisible by both the batch sive and number of gpus but I have done that. I have scoured the internet for days and am unable to find anything that has been able to fix the issue I am having. I am running keras v2.0.9 and tensor flow v1.1.0
VARIABLES:
attributeTables[0] is a numpy array shape (35560, 700)
y is a numpy array shape (35560, ) I have also tried using shape (35560, 1) for y but all that happens is the "Incompatible shapes: [2540] vs. [508]" changes from that to "Incompatible shapes: [2540, 1] vs. [508, 1]"
So this says to me that the issue is only with the targetsand that the expected batch size is getting multiplied somewhere in the middle of the process only for the targets and not for attributes causing a mismatch or at least only durring validation I'm not sure.
Here is the code and error in question.
import numpy as np
from keras.models import Sequential
from keras.utils import multi_gpu_model
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
def baseline_model():
# create model
print("Building Layers")
model = Sequential()
model.add(LSTM(700, batch_input_shape=(batchSize, X.shape[1], X.shape[2]), activation='tanh', return_sequences=False, stateful=True))
model.add(Dense(1))
print("Building Parallel model")
parallel_model = multi_gpu_model(model, gpus=nGPU)
# Compile model
#model.compile(loss='mean_squared_error', optimizer='adam')
print("Compiling Model")
parallel_model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
return parallel_model
def buildModel():
print("Bulding Model")
mlp = baseline_model()
print("Fitting Model")
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
print("Scaling")
scaler = StandardScaler()
X_Scaled = scaler.fit_transform(attributeTables[0])
print("Finding Batch Size")
nGPU = 5
batchSize = 500
while len(X_Scaled) % (batchSize * nGPU) != 0:
batchSize += 1
print("Filling Arrays")
X = X_Scaled.reshape((X_Scaled.shape[0], X_Scaled.shape[1], 1))
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=.8)
print("Calling buildModel()")
model = buildModel()
print("Ploting History")
plt.plot(model.history['loss'], label='train')
plt.plot(model.history['val_loss'], label='test')
plt.legend()
plt.show()
Here is my complete output.
Beginning OHLC Load
Time took : 7.571000099182129
Making gloabal copies
Time took : 0.0
Using TensorFlow backend.
Scaling
Finding Batch Size
Filling Arrays
Calling buildModel()
Bulding Model
Building Layers
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:2010: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
Building Parallel model
Compiling Model
Fitting Model
Train on 28448 samples, validate on 7112 samples
Epoch 1/1
Traceback (most recent call last):
File "<ipython-input-2-74c49f05bfbc>", line 1, in <module>
runfile('C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py', wdir='C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor')
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 57, in buildModel
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1631, in fit
validation_steps=validation_steps)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1213, in _fit_loop
outs = f(ins_batch)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2332, in __call__
**self.session_kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 778, in run
run_metadata_ptr)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 982, in _run
feed_dict_string, options, run_metadata)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1032, in _do_run
target_list, options, run_metadata)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1052, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: Incompatible shapes: [2540,1] vs. [508,1]
[[Node: training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _class=["loc:#loss/concatenate_1_loss/sub"], _device="/job:localhost/replica:0/task:0/gpu:0"](training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape, training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape_1)]]
[[Node: replica_1/sequential_1/dense_1/BiasAdd/_313 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:1", send_device_incarnation=1, tensor_name="edge_1355_replica_1/sequential_1/dense_1/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op 'training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs', defined at:
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 245, in <module>
main()
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in main
kernel.start()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 832, in start
self._run_callback(self._callbacks.popleft())
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 605, in _run_callback
ret = callback()
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 265, in enter_eventloop
self.eventloop(self)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 106, in loop_qt5
return loop_qt4(kernel)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 99, in loop_qt4
_loop_qt(kernel.app)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 83, in _loop_qt
app.exec_()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\eventloops.py", line 39, in process_stream_events
kernel.do_one_iteration()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 298, in do_one_iteration
stream.flush(zmq.POLLIN, 1)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 352, in flush
self._handle_recv()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-74c49f05bfbc>", line 1, in <module>
runfile('C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py', wdir='C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor')
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 57, in buildModel
return mlp.fit(X_train, y_train, epochs=1, batch_size=batchSize, shuffle=False, validation_data=(X_test, y_test))
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1608, in fit
self._make_train_function()
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 990, in _make_train_function
loss=self.total_loss)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\optimizers.py", line 415, in get_updates
grads = self.get_gradients(loss, params)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\optimizers.py", line 73, in get_gradients
grads = K.gradients(loss, params)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2369, in gradients
return tf.gradients(loss, variables, colocate_gradients_with_ops=True)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 560, in gradients
grad_scope, op, func_call, lambda: grad_fn(op, *out_grads))
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 368, in _MaybeCompile
return grad_fn() # Exit early
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 560, in <lambda>
grad_scope, op, func_call, lambda: grad_fn(op, *out_grads))
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_grad.py", line 609, in _SubGrad
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 411, in _broadcast_gradient_args
name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
...which was originally created as op 'loss/concatenate_1_loss/sub', defined at:
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 245, in <module>
main()
[elided 27 identical lines from previous traceback]
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 77, in <module>
model = buildModel()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 55, in buildModel
mlp = baseline_model()
File "C:/Users/BeeAndTurtle/Documents/Programming/Python/Kraken_API_Market_Prediction/predictor/test.py", line 29, in baseline_model
parallel_model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 860, in compile
sample_weight, mask)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 460, in weighted
score_array = fn(y_true, y_pred)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py", line 13, in mean_absolute_error
return K.mean(K.abs(y_pred - y_true), axis=-1)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 821, in binary_op_wrapper
return func(x, y, name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 2627, in _sub
result = _op_def_lib.apply_op("Sub", x=x, y=y, name=name)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Incompatible shapes: [2540,1] vs. [508,1]
[[Node: training/Adam/gradients/loss/concatenate_1_loss/sub_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _class=["loc:#loss/concatenate_1_loss/sub"], _device="/job:localhost/replica:0/task:0/gpu:0"](training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape, training/Adam/gradients/loss/concatenate_1_loss/sub_grad/Shape_1)]]
[[Node: replica_1/sequential_1/dense_1/BiasAdd/_313 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:1", send_device_incarnation=1, tensor_name="edge_1355_replica_1/sequential_1/dense_1/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]