When do I need type annotations? - haskell

Consider these functions
{-# LANGUAGE TypeFamilies #-}
tryMe :: Maybe Int -> Int -> Int
tryMe (Just a) b = a
tryMe Nothing b = b
class Test a where
type TT a
doIt :: TT a -> a -> a
instance Test Int where
type TT Int = Maybe Int
doIt (Just a) b = a
doIt (Nothing) b = b
This works
main = putStrLn $ show $ tryMe (Just 2) 25
This doesn't
main = putStrLn $ show $ doIt (Just 2) 25
{-
• Couldn't match expected type ‘TT a0’ with actual type ‘Maybe a1’
The type variables ‘a0’, ‘a1’ are ambiguous
-}
But then, if I specify the type for the second argument it does work
main = putStrLn $ show $ doIt (Just 2) 25::Int
The type signature for both functions seem to be the same. Why do I need to annotate the second parameter for the type class function? Also, if I annotate only the first parameter to Maybe Int it still doesn't work. Why?

When do I need to cast types in Haskell?
Only in very obscure, pseudo-dependently-typed settings where the compiler can't proove that two types are equal but you know they are; in this case you can unsafeCoerce them. (Which is like C++' reinterpret_cast, i.e. it completely circumvents the type system and just treats a memory location as if it contains the type you've told it. This is very unsafe indeed!)
However, that's not what you're talking about here at all. Adding a local signature like ::Int does not perform any cast, it merely adds a hint to the type checker. That such a hint is needed shouldn't be surprising: you didn't specify anywhere what a is supposed to be; show is polymorphic in its input and doIt polymorphic in its output. But the compiler must know what it is before it can resolve the associated TT; choosing the wrong a might lead to completely different behaviour from the intended.
The more surprising thing is, really, that sometimes you can omit such signatures. The reason this is possible is that Haskell, and more so GHCi, has defaulting rules. When you write e.g. show 3, you again have an ambiguous a type variable, but GHC recognises that the Num constraint can be “naturally” fulfilled by the Integer type, so it just takes that pick.
Defaulting rules are handy when quickly evaluating something at the REPL, but they are fiddly to rely on, hence I recommend you never do it in a proper program.
Now, that doesn't mean you should always add :: Int signatures to any subexpression. It does mean that, as a rule, you should aim for making function arguments always less polymorphic than the results. What I mean by that: any local type variables should, if possible, be deducable from the environment. Then it's sufficient to specify the type of the final end result.
Unfortunately, show violates that condition, because its argument is polymorphic with a variable a that doesn't appear in the result at all. So this is one of the functions where you don't get around having some signature.

All this discussion is fine, but it hasn't yet been stated explicitly that in Haskell numeric literals are polymorphic. You probably knew that, but may not have realized that it has bearing on this question. In the expression
doIt (Just 2) 25
25 does not have type Int, it has type Num a => a — that is, its type is just some numeric type, awaiting extra information to pin it down exactly. And what makes this tricky is that the specific choice might affect the type of the first argument. Thus amalloy's comment
GHC is worried that someone might define an instance Test Integer, in which case the choice of instance will be ambiguous.
When you give that information — which can come from either the argument or the result type (because of the a -> a part of doIt's signature) — by writing either of
doIt (Just 2) (25 :: Int)
doIt (Just 2) 25 :: Int -- N.B. this annotates the type of the whole expression
then the specific instance is known.
Note that you do not need type families to produce this behavior. This is par for the course in typeclass resolution. The following code will produce the same error for the same reason.
class Foo a where
foo :: a -> a
main = print $ foo 42
You might be wondering why this doesn't happen with something like
main = print 42
which is a good question, that leftroundabout has already addressed. It has to do with Haskell's defaulting rules, which are so specialized that I consider them little more than a hack.

With this expression:
putStrLn $ show $ tryMe (Just 2) 25
We've got this starting information to work from:
putStrLn :: String -> IO ()
show :: Show a => a -> String
tryMe :: Maybe Int -> Int -> Int
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
(where I've used different type variables everywhere, so we can more easily consider them all at once in the same scope)
The job of the type-checker is basically to find types to choose for all of those variables, so and then make sure that the argument and result types line up, and that all the required type class instances exist.
Here we can see that tryMe applied to two arguments is going to be an Int, so a (used as input to show) must be Int. That requires that there is a Show Int instance; indeed there is, so we're done with a.
Similarly tryMe wants a Maybe Int where we have the result of applying Just. So b must be Int, and our use of Just is Int -> Maybe Int.
Just was applied to 2 :: Num c => c. We've decided it must be applied to an Int, so c must be Int. We can do that if we have Num Int, and we do, so c is dealt with.
That leaves 25 :: Num d => d. It's used as the second argument to tryMe, which is expecting an Int, so d must be Int (again discharging the Num constraint).
Then we just have to make sure all the argument and result types line up, which is pretty obvious. This is mostly rehashing the above since we made them line up by choosing the only possible value of the type variables, so I won't get into it in detail.
Now, what's different about this?
putStrLn $ show $ doIt (Just 2) 25
Well, lets look at all the pieces again:
putStrLn :: String -> IO ()
show :: Show a => a -> String
doIt :: Test t => TT t -> t -> t
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
The input to show is the result of applying doIt to two arguments, so it is t. So we know that a and t are the same type, which means we need Show t, but we don't know what t is yet so we'll have to come back to that.
The result of applying Just is used where we want TT t. So we know that Maybe b must be TT t, and therefore Just :: _b -> TT t. I've written _b using GHC's partial type signature syntax, because this _b is not like the b we had before. When we had Just :: b -> Maybe b we could pick any type we liked for b and Just could have that type. But now we need some specific but unknown type _b such that TT t is Maybe _b. We don't have enough information to know what that type is yet, because without knowing t we don't know which instance's definition of TT t we're using.
The argument of Just is 2 :: Num c => c. So we can tell that c must also be _b, and this also means we're going to need a Num _b instance. But since we don't know what _b is yet we can't check whether there's a Num instance for it. We'll come back to it later.
And finally the 25 :: Num d => d is used where doIt wants a t. Okay, so d is also t, and we need a Num t instance. Again, we still don't know what t is, so we can't check this.
So all up, we've figured out this:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
And have also these constraints waiting to be solved:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
(If you haven't seen it before, ~ is how we write a constraint that two type expressions must be the same thing)
And we're stuck. There's nothing further we can figure out here, so GHC is going to report a type error. The particular error message you quoted is complaining that we can't tell that TT t and Maybe _b are the same (it calls the type variables a0 and a1), since we didn't have enough information to select concrete types for them (they are ambiguous).
If we add some extra type signatures for parts of the expression, we can go further. Adding 25 :: Int1 immediately lets us read off that t is Int. Now we can get somewhere! Lets patch that into the constrints we had yet to solve:
Test Int, Num Int, Num _b, Show Int, (Maybe _b) ~ (TT Int)
Num Int and Show Int are obvious and built in. We've got Test Int too, and that gives us the definition TT Int = Maybe Int. So (Maybe _b) ~ (Maybe Int), and therefore _b is Int too, which also allows us to discharge that Num _b constraint (it's Num Int again). And again, it's easy now to verify all the argument and result types match up, since we've filled in all the type variables to concrete types.
But why didn't your other attempt work? Lets go back to as far as we could get with no additional type annotation:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
Also needing to solve these constraints:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
Then add Just 2 :: Maybe Int. Since we know that's also Maybe _b and also TT t, this tells us that _b is Int. We also now know we're looking for a Test instance that gives us TT t = Maybe Int. But that doesn't actually determine what t is! It's possible that there could also be:
instance Test Double where
type TT Double = Maybe Int
doIt (Just a) _ = fromIntegral a
doIt Nothing b = b
Now it would be valid to choose t as either Int or Double; either would work fine with your code (since the 25 could also be a Double), but would print different things!
It's tempting to complain that because there's only one instance for t where TT t = Maybe Int that we should choose that one. But the instance selection logic is defined not to guess this way. If you're in a situation where it's possible that another matching instance should exist, but isn't there due to an error in the code (forgot to import the module where it's defined, for example), then it doesn't commit to the only matching instance it can see. It only chooses an instance when it knows no other instance could possibly apply.2
So the "there's only one instance where TT t = Maybe Int" argument doesn't let GHC work backward to settle that t could be Int.
And in general with type families you can only "work forwards"; if you know the type you're applying a type family to you can tell from that what the resulting type should be, but if you know the resulting type this doesn't identify the input type(s). This is often surprising, since ordinary type constructors do let us "work backwards" this way; we used this above to conclude from Maybe _b = Maybe Int that _b = Int. This only works because with new data declarations, applying the type constructor always preserves the argument type in the resulting type (e.g. when we apply Maybe to Int, the resulting type is Maybe Int). The same logic doesn't work with type families, because there could be multiple type family instances mapping to the same type, and even when there isn't there is no requirement that there's an identifiable pattern connecting something in the resulting type to the input type (I could have type TT Char = Maybe (Int -> Double, Bool).
So you'll often find that when you need to add a type annotation, you'll often find that adding one in a place whose type is the result of a type family doesn't work, and you'll need to pin down the input to the type family instead (or something else that is required to be the same type as it).
1 Note that the line you quoted as working in your question main = putStrLn $ show $ doIt (Just 2) 25::Int does not actually work. The :: Int signature binds "as far out as possible", so you're actually claiming that the entire expression putStrLn $ show $ doIt (Just 2) 25 is of type Int, when it must be of type IO (). I'm assuming when you really checked it you put brackets around 25 :: Int, so putStrLn $ show $ doIt (Just 2) (25 :: Int).
2 There are specific rules about what GHC considers "certain knowledge" that there could not possibly be any other matching instances. I won't get into them in detail, but basically when you have instance Constraints a => SomeClass (T a), it has to be able to unambiguously pick an instance only by considering the SomeClass (T a) bit; it can't look at the constraints left of the => arrow.

Related

Haskell Show type class in a function

I have a function
mySucc :: (Enum a, Bounded a, Eq a, Show a) => a -> Maybe a
mySucc int
| int == maxBound = Nothing
| otherwise = Just $ succ int
When I want to print the output of this function in ghci, Haskell seems to be confused as to which instance of Show to use. Why is that? Shouldn't Haskell automatically resolve a's type during runtime and use it's Show?
My limited understanding of type class is that, if you mention a type (in my case a) and say that it belongs to a type class (Show), Haskell should automatically resolve the type. Isn't that how it resolves Bounded, Enum and Eq? Please correct me if my understanding is wrong.
Shouldn't Haskell automatically resolve a's type during runtime and use it's Show?
Generally speaking, types don't exist at runtime. The compiler typechecks your code, resolves any polymorphism, and then erases the types. But, this is kind of orthogonal to your main question.
My limited understanding of type class is that, if you mention a type (in my case a) and say that it belongs to a type class (Show), Haskell should automatically resolve the type
No. The compiler will automatically resolve the instance. What that means is, you don't need to explicitly pass a showing-method into your function. For example, instead of the function
showTwice :: Show a => a -> String
showTwice x = show x ++ show x
you could have a function that doesn't use any typeclass
showTwice' :: (a -> String) -> a -> String
showTwice' show' x = show' x ++ show' x
which can be used much the same way as showTwice if you give it the standard show as the first argument. But that argument would need to be manually passed around at each call site. That's what you can avoid by using the type class instead, but this still requires the type to be known first.
(Your mySucc doesn't actually use show in any way at all, so you might as well omit the Show a constraint completely.)
When your call to mySucc appears in a larger expression, chances are the type will in fact also be inferred automatically. For example, mySucc (length "bla") will use a ~ Int, because the result of length is fixed to Int; or mySucc 'y' will use a ~ Char. However, if all the subexpressions are polymorphic (and in Haskell, even number literals are polymorphic), then the compiler won't have any indication what type you actually want. In that case you can always specify it explicitly, either in the argument
> mySucc (3 :: Int)
Just 4
or in the result
> mySucc 255 :: Maybe Word8
Nothing
Are you writing mySucc 1? In this case, you get a error because 1 literal is a polymorphic value of type Num a => a.
Try calling mySucc 1 :: Maybe Int and it will work.

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

Understanding readMaybe (Text.Read)

I'm currenlty learning Haskell and have questions regarding this example found in Joachim Breitner's online course CIS194:
import Text.Read
main = putStrLn "Hello World. Please enter a number:" >>
getLine >>= \s ->
case readMaybe s of -- why not `readMaybe s :: Maybe Int` ?!
Just n -> let m = n + 1 in
putStrLn (show m)
Nothing -> putStrLn "That’s not a number! Try again"
The code does exactly what expected, that is it returns an integer +1 if the input is an integer and it returns "That’s not a number! Try again" otherwise (e.g. if the input is a Double).
I don't understand why readMaybe s only returns Just n if n is of type Int. The type of readMaybe is readMaybe :: Read a => String -> Maybe a and therefore I thought it would only work if the line read instead:
case readMaybe s :: Maybe Int of
In fact if I just prompt > readMaybe "3" in ghci, it returns Nothing, whereas > readMaybe "3" :: Maybe Int returns Just 3.
To sum up, my question is the following: how does the compiler now that s is parsed to an Int and not something else (e.g. Double) without the use of :: Maybe Int? Why does it not return Nothing everytime ?
I hope my question was clear enough, thanks a lot for your help.
TL;DR: The context of readMaybe s tells us that it's a Num a => Maybe a, defaulting makes it a Maybe Integer.
We have to look at all places where the result of readMaybe is used to determine its type.
We have
Nothing, which doesn't tell us aynthing about a
Just n, and n is used in the context m = n + 1.
Since m = n + 1, we now know that n's type must be an instance of Num, since (+) :: Num a => a -> a -> a and 1 :: Num a => a. At this point the type isn't clear, therefore it gets defaulted:
4.3.4 Ambiguous Types, and Defaults for Overloaded Numeric Operations
topdecl -> default (type1 , ... , typen) (n>=0)
A problem inherent with Haskell -style overloading is the possibility of an ambiguous type. For example, using the read and show functions defined in Chapter 10, and supposing that just Int and Bool are members of Read and Show, then the expression
let x = read "..." in show x -- invalid
is ambiguous, because the types for show and read,
show :: forall a. Show a =>a ->String
read :: forall a. Read a =>String ->a
could be satisfied by instantiating a as either Int in both cases, or Bool. Such expressions are considered ill-typed, a static error.
We say that an expression e has an ambiguous type if, in its type forall u. cx =>t, there is a type variable u in u that occurs in cx but not in t. Such types are invalid.
The defaults defined in the Haskell report are default (Integer, Double), e.g. GHC tries Integer first, and if that doesn't work it tries to use Double.
Since Integer is a valid type in the context m = n + 1, we have m :: Integer, therefore n :: Integer, and at last readMaybe s :: Maybe Integer.
If you want to disable defaults, use default () and you'll be greeted by ambiguous types errors, just as you expected.
There indeed some underlying magic, due to how type inference works.
Here's a simpler example, run inside GHCi:
> print (1 :: Integer)
1
> print (1 :: Float)
1.0
Prelude> print 1
1
In the last line, 1 is a polymorphic value of type Num a => a, i.e. a value inside any numeric type like Integer and Float. If we consider that value inside type Integer, we print it as "1". If we consider it as a Float, we print it as "1.0". Other numeric types may even have different print formats.
Still, GHCi in the last line decides that 1 is an Integer. Why?
Well, it turns out that the code is ambiguous: after all 1 could be printed in different ways! Haskell in such cases raises an error, due to the ambiguity. However, it makes an exception for numeric types (those inc lass Num), to be more convenient to program. Concretely, when a numeric type is not precisely determined by the code, Haskell uses its defaulting rules, which specify which numeric types should be used.
GHC can warn when defaulting happens, if wanted.
Further, the types are propagated. If we evaluate
case readMaybe s of
Just x -> let z = x + length ['a','z']
in ...
GHC knows that length returns an Int. Also, (+) operates only on arguments of the same type, hence x has to be an Int as well. This in turns implies that the call readMaybe s has to return Maybe Int. Hence, the right Read instance for Ints is chosen.
Note how this information is propagated backwards by the type inference engine, so that the programmer does not have to add type annotations which can be deduced from the rest of the code. It happens very frequently in Haskell.
One can always be explicit, as in
readMaybe s :: Maybe Int
-- or, with extensions on, one can mention the variable part of the type, only
readMaybe s # Int
If you prefer, feel free to add such annotations. Sometimes, they make the code more readable since they document your intent. Whoever reads the code, can immediately spot which Read instance is being used here without looking at the context.

How can an arbitrary Num contain any other numeric type?

I'm just starting with Haskell, and I thought I'd start by making a random image generator. I looked around a bit and found JuicyPixels, which offers a neat function called generateImage. The example that they give doesn't seem to work out of the box.
Their example:
imageCreator :: String -> IO ()
imageCreator path = writePng path $ generateImage pixelRenderer 250 300
where pixelRenderer x y = PixelRGB8 x y 128
when I try this, I get that generateImage expects an Int -> Int -> PixelRGB8 whereas pixelRenderer is of type Pixel8 -> Pixel8 -> PixelRGB8. PixelRGB8 is of type Pixel8 -> Pixel8 -> Pixel8 -> PixelRGB8, so it makes sense that pixelRenderer is doing some type inference to determine that x and y are of type Pixel8. If I define a type signature that asserts that they are of type Int (so the function gets accepted by generateImage, PixelRGB8 complains that it needs Pixel8s, not Ints.
Pixel8 is just a type alias for Word8. After some hair pulling, I discovered that the way to convert an Int to a Word8 is by using fromIntegral.
The type signature for fromIntegral is (Integral a, Num b) => a -> b. It seems to me that the function doesn't actually know what you want to convert it to, so it converts to the very generic Num class. So theoretically, the output of this is a variable of any type that fits the type class Num (correct me if I'm mistaken here--as I understand it, classes are kind of like "interfaces" where types are more like classes/primitives in OOP). If I assign a variable
let n = fromIntegral 5
:t n -- n :: Num b => b
So I'm wondering... what is 'b'? I can use this variable as anything, and it will implicitly cast to any numeric type, as it seems. Not only will it implicitly cast to a Word8, it will implicitly cast to a Pixel8, meaning fromPixel effectively gets turned from (as I understood it) (Integral a, Num b) => a -> b to (Integral a) => a -> Pixel8 depending on context.
Can someone please clarify exactly what's happening here? Why can I use a generic Num as any type that fits Num, both mechanically and "ethically"? I don't understand how the implicit conversion is implemented (if I were to create my own class, I feel like I would need to add explicit conversion functions). I also don't really know why this works; here I can use a pretty unsafe type and convert it implicitly to anything else. (for example, fromIntegral 50000 gets translated to 80 if I implicitly convert it to a Word8)
A common implementation of type classes such as Num is dictionary-passing. Roughly, when the compiler sees something like
f :: Num a => a -> a
f x = x + 2
it transforms it into something like
f :: (Integer -> a, a -> a -> a) -> a -> a
-- ^-- the "dictionary"
f (dictFromInteger, dictPlus) x = dictPlus x (dictFromInteger 2)
The latter basically says: "pass me an implementation for these methods of class Num for your type a, and I will use them to produce a function a -> a for you".
Values such as your n :: Num b => b are no different. They are compiled into things such as
n :: (Integer -> b) -> b
n dictFromInteger = dictFromInteger 5 -- roughly
As you can see, this turns innocent-looking integer literals into functions, which can (and does) impact performance. However, in many circumstances the compiler can realize that the full polymorphic version is not actually needed, and remove all the dictionaries.
For instance, if you write f 3 but f expects Int, the "polymorphic" 3 can be converted at compile time. So type inference can aid the optimization phase (and user-written type annotation can greatly help here). Further, some other optimizations can be triggered manually, e.g. using the GHC SPECIALIZE pragma. Finally, the dreaded monomorphism restriction tries hard to force non-functions to remain non-functions after translation, at the cost of some loss of polymorphism. However, the MR is now being regarded as harmful, since it can cause puzzling type errors in some contexts.

Why `Just String` will be wrong in Haskell

Hi I have a trivial but exhausting question during learning myself the Parameterized Types topic in Haskell. Here is my question:
Look this is the definition of Maybe:
data Maybe a = Just a | Nothing
And we use this like:
Just "hello world"
Just 100
But why can't Just take a type variable?
For example:
Just String
Just Int
I know this problem is quite fool, but I still can't figure it out...
Well, first note that String and Int aren't type variables, but types (type constants, if you will). But that doesn't really matter for the purpose of your question.
What matters is the destinction between Haskells type language and value language. These are generally kept apart. String and Int and Maybe live in the type language, while "hello world" and 100 and Just and Nothing live in the value language. Each knows nothing about the other side. Only, the compiler knows "this discription of a value belongs to that type", but really types exist only at compile-time and values exist only at runtime.
Two things that are a bit confusing:
It's allowed to have names that exist both in the type- and value language. Best-known are () and mere synonym-type like
newtype Endo a = Endo { runEndo :: a -> a }
but really these are two seperate entities: the type constructor Endo :: *->* (see below for these * thingies) and the value constructor Endo :: (a->a) -> Endo a. They just happen to share the same name, but in completely different scopes – much like when you declare both addTwo x = x + 2 and greet x = "Hello "++x, where both uses of the x symbol have nothing to do with each other.
The data syntax seems to intermingle types and values. Everywhere else, types and values must always be separated by a ::, most typically in signatures
"hello world" :: String
100 :: Int
Just :: Int -> Maybe Int
{-hence-}Just 100 :: Maybe Int
Nothing :: Maybe Int
foo :: (Num a, Ord a) => a -> Maybe a -- this really means `forall a . (Num a, Ord a) => a -> Maybe a
foo n | n <= 0 = Nothing
| otherwise = Just $ n - 1
and indeed that syntax can be used to define data in more distinctive way too, if you enable -XGADTs:
data Maybe a where
Just :: a -> Maybe a
Nothing :: Maybe a
Now we have the :: again as a clear distinction between value-level (left) and type-level.
You can actually take it up one more level: the above declaration can also be written
data Maybe :: * -> * where
Just :: a -> Maybe a
Nothing :: Maybe a
Here Maybe :: * -> * means, "Maybe is a type-level thing that has kind * -> *", i.e. it takes a type-level argument of kind * (such as Int) and returns another type-level thing of kind * (here, Maybe Int). Kinds are to types as types are to values.
You can certainly declare data Maybe a = Just String | Nothing, and you can declare data Maybe a = Just Int | Nothing, but only one of them at a time. Using a type variable permits to declare in what way the type of the contents of the constructed values change with the value of the type variable. So data Maybe a = Just a | Nothing tells us that the contents "inside" Just is exactly of the type passed to Maybe. That way Maybe String means that "inside" Just there is a value of type String, and Maybe Int means that "inside" Just there is a value of type Int.

Resources