math.sqrt function python gives same result for two different values [duplicate] - python-3.x

Why does the math module return the wrong result?
First test
A = 12345678917
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 12345678917
B = 12345678917
Here, the result is correct.
Second test
A = 123456758365483459347856
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 123456758365483459347856
B = 123456758365483467538432
Here the result is incorrect.
Why is that the case?

Because math.sqrt(..) first casts the number to a floating point and floating points have a limited mantissa: it can only represent part of the number correctly. So float(A**2) is not equal to A**2. Next it calculates the math.sqrt which is also approximately correct.
Most functions working with floating points will never be fully correct to their integer counterparts. Floating point calculations are almost inherently approximative.
If one calculates A**2 one gets:
>>> 12345678917**2
152415787921658292889L
Now if one converts it to a float(..), one gets:
>>> float(12345678917**2)
1.5241578792165828e+20
But if you now ask whether the two are equal:
>>> float(12345678917**2) == 12345678917**2
False
So information has been lost while converting it to a float.
You can read more about how floats work and why these are approximative in the Wikipedia article about IEEE-754, the formal definition on how floating points work.

The documentation for the math module states "It provides access to the mathematical functions defined by the C standard." It also states "Except when explicitly noted otherwise, all return values are floats."
Those together mean that the parameter to the square root function is a float value. In most systems that means a floating point value that fits into 8 bytes, which is called "double" in the C language. Your code converts your integer value into such a value before calculating the square root, then returns such a value.
However, the 8-byte floating point value can store at most 15 to 17 significant decimal digits. That is what you are getting in your results.
If you want better precision in your square roots, use a function that is guaranteed to give full precision for an integer argument. Just do a web search and you will find several. Those usually do a variation of the Newton-Raphson method to iterate and eventually end at the correct answer. Be aware that this is significantly slower that the math module's sqrt function.
Here is a routine that I modified from the internet. I can't cite the source right now. This version also works for non-integer arguments but just returns the integer part of the square root.
def isqrt(x):
"""Return the integer part of the square root of x, even for very
large values."""
if x < 0:
raise ValueError('square root not defined for negative numbers')
n = int(x)
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = (1 << (a+b)) - 1
while True:
y = (x + n//x) // 2
if y >= x:
return x
x = y

If you want to calculate sqrt of really large numbers and you need exact results, you can use sympy:
import sympy
num = sympy.Integer(123456758365483459347856)
print(int(num) == int(sympy.sqrt(num**2)))

The way floating-point numbers are stored in memory makes calculations with them prone to slight errors that can nevertheless be significant when exact results are needed. As mentioned in one of the comments, the decimal library can help you here:
>>> A = Decimal(12345678917)
>>> A
Decimal('123456758365483459347856')
>>> B = A.sqrt()**2
>>> B
Decimal('123456758365483459347856.0000')
>>> A == B
True
>>> int(B)
123456758365483459347856
I use version 3.6, which has no hardcoded limit on the size of integers. I don't know if, in 2.7, casting B as an int would cause overflow, but decimal is incredibly useful regardless.

Related

why is np.exp(x) not equal to np.exp(1)**x

Why is why is np.exp(x) not equal to np.exp(1)**x?
For example:
np.exp(400)
>>>5.221469689764144e+173
np.exp(1)**400
>>>5.221469689764033e+173
np.exp(400)-np.exp(1)**400
>>>1.1093513018771065e+160
This is optimisation of numpy that raise this diff.
Indeed, you have to understand how is calculated the Euler number in math:
e = (1/n)**n with n == inf.
I think numpy stop at a certain order:
You have in the numpy exp documentation here that is not very clear about how the Euler number is calculated.
Because of this order that is not equal to infinity, you have this small difference in the two calculations.
Indeed the value np.exp(400) is calculated using this: (1 + 400/n)**n
>>> (1 + 400/n)**n
5.221642085428121e+173
>>> numpy.exp(400)
5.221469689764144e+173
Here you have n = 1000000000000 wich is very small and raise this difference at 10e-5.
Indeed there is no exact value of the Euler number. Like Pi, you can only have an approched value.
It looks like a rounding issue. In the first case it's internally using a very precise value of e, while in the second you get a less precise value, which when multiplied 400 times the precision issues become more apparent.
The actual result when using the Windows calculator is 5.2214696897641439505887630066496e+173, so you can see your first outcome is fine, while the second is not.
5.2214696897641439505887630066496e+173 // calculator
5.221469689764144e+173 // exp(400)
5.221469689764033e+173 // exp(1)**400
Starting from your result, it looks it's using a value with 15 digits of precision.
2.7182818284590452353602874713527 // e
2.7182818284590450909589085441968 // 400th root of the 2nd result

Strange result from Summation of numbers in Excel and Matlab [duplicate]

I am writing a program where I need to delete duplicate points stored in a matrix. The problem is that when it comes to check whether those points are in the matrix, MATLAB can't recognize them in the matrix although they exist.
In the following code, intersections function gets the intersection points:
[points(:,1), points(:,2)] = intersections(...
obj.modifiedVGVertices(1,:), obj.modifiedVGVertices(2,:), ...
[vertex1(1) vertex2(1)], [vertex1(2) vertex2(2)]);
The result:
>> points
points =
12.0000 15.0000
33.0000 24.0000
33.0000 24.0000
>> vertex1
vertex1 =
12
15
>> vertex2
vertex2 =
33
24
Two points (vertex1 and vertex2) should be eliminated from the result. It should be done by the below commands:
points = points((points(:,1) ~= vertex1(1)) | (points(:,2) ~= vertex1(2)), :);
points = points((points(:,1) ~= vertex2(1)) | (points(:,2) ~= vertex2(2)), :);
After doing that, we have this unexpected outcome:
>> points
points =
33.0000 24.0000
The outcome should be an empty matrix. As you can see, the first (or second?) pair of [33.0000 24.0000] has been eliminated, but not the second one.
Then I checked these two expressions:
>> points(1) ~= vertex2(1)
ans =
0
>> points(2) ~= vertex2(2)
ans =
1 % <-- It means 24.0000 is not equal to 24.0000?
What is the problem?
More surprisingly, I made a new script that has only these commands:
points = [12.0000 15.0000
33.0000 24.0000
33.0000 24.0000];
vertex1 = [12 ; 15];
vertex2 = [33 ; 24];
points = points((points(:,1) ~= vertex1(1)) | (points(:,2) ~= vertex1(2)), :);
points = points((points(:,1) ~= vertex2(1)) | (points(:,2) ~= vertex2(2)), :);
The result as expected:
>> points
points =
Empty matrix: 0-by-2
The problem you're having relates to how floating-point numbers are represented on a computer. A more detailed discussion of floating-point representations appears towards the end of my answer (The "Floating-point representation" section). The TL;DR version: because computers have finite amounts of memory, numbers can only be represented with finite precision. Thus, the accuracy of floating-point numbers is limited to a certain number of decimal places (about 16 significant digits for double-precision values, the default used in MATLAB).
Actual vs. displayed precision
Now to address the specific example in the question... while 24.0000 and 24.0000 are displayed in the same manner, it turns out that they actually differ by very small decimal amounts in this case. You don't see it because MATLAB only displays 4 significant digits by default, keeping the overall display neat and tidy. If you want to see the full precision, you should either issue the format long command or view a hexadecimal representation of the number:
>> pi
ans =
3.1416
>> format long
>> pi
ans =
3.141592653589793
>> num2hex(pi)
ans =
400921fb54442d18
Initialized values vs. computed values
Since there are only a finite number of values that can be represented for a floating-point number, it's possible for a computation to result in a value that falls between two of these representations. In such a case, the result has to be rounded off to one of them. This introduces a small machine-precision error. This also means that initializing a value directly or by some computation can give slightly different results. For example, the value 0.1 doesn't have an exact floating-point representation (i.e. it gets slightly rounded off), and so you end up with counter-intuitive results like this due to the way round-off errors accumulate:
>> a=sum([0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]); % Sum 10 0.1s
>> b=1; % Initialize to 1
>> a == b
ans =
logical
0 % They are unequal!
>> num2hex(a) % Let's check their hex representation to confirm
ans =
3fefffffffffffff
>> num2hex(b)
ans =
3ff0000000000000
How to correctly handle floating-point comparisons
Since floating-point values can differ by very small amounts, any comparisons should be done by checking that the values are within some range (i.e. tolerance) of one another, as opposed to exactly equal to each other. For example:
a = 24;
b = 24.000001;
tolerance = 0.001;
if abs(a-b) < tolerance, disp('Equal!'); end
will display "Equal!".
You could then change your code to something like:
points = points((abs(points(:,1)-vertex1(1)) > tolerance) | ...
(abs(points(:,2)-vertex1(2)) > tolerance),:)
Floating-point representation
A good overview of floating-point numbers (and specifically the IEEE 754 standard for floating-point arithmetic) is What Every Computer Scientist Should Know About Floating-Point Arithmetic by David Goldberg.
A binary floating-point number is actually represented by three integers: a sign bit s, a significand (or coefficient/fraction) b, and an exponent e. For double-precision floating-point format, each number is represented by 64 bits laid out in memory as follows:
The real value can then be found with the following formula:
This format allows for number representations in the range 10^-308 to 10^308. For MATLAB you can get these limits from realmin and realmax:
>> realmin
ans =
2.225073858507201e-308
>> realmax
ans =
1.797693134862316e+308
Since there are a finite number of bits used to represent a floating-point number, there are only so many finite numbers that can be represented within the above given range. Computations will often result in a value that doesn't exactly match one of these finite representations, so the values must be rounded off. These machine-precision errors make themselves evident in different ways, as discussed in the above examples.
In order to better understand these round-off errors it's useful to look at the relative floating-point accuracy provided by the function eps, which quantifies the distance from a given number to the next largest floating-point representation:
>> eps(1)
ans =
2.220446049250313e-16
>> eps(1000)
ans =
1.136868377216160e-13
Notice that the precision is relative to the size of a given number being represented; larger numbers will have larger distances between floating-point representations, and will thus have fewer digits of precision following the decimal point. This can be an important consideration with some calculations. Consider the following example:
>> format long % Display full precision
>> x = rand(1, 10); % Get 10 random values between 0 and 1
>> a = mean(x) % Take the mean
a =
0.587307428244141
>> b = mean(x+10000)-10000 % Take the mean at a different scale, then shift back
b =
0.587307428244458
Note that when we shift the values of x from the range [0 1] to the range [10000 10001], compute a mean, then subtract the mean offset for comparison, we get a value that differs for the last 3 significant digits. This illustrates how an offset or scaling of data can change the accuracy of calculations performed on it, which is something that has to be accounted for with certain problems.
Look at this article: The Perils of Floating Point. Though its examples are in FORTRAN it has sense for virtually any modern programming language, including MATLAB. Your problem (and solution for it) is described in "Safe Comparisons" section.
type
format long g
This command will show the FULL value of the number. It's likely to be something like 24.00000021321 != 24.00000123124
Try writing
0.1 + 0.1 + 0.1 == 0.3.
Warning: You might be surprised about the result!
Maybe the two numbers are really 24.0 and 24.000000001 but you're not seeing all the decimal places.
Check out the Matlab EPS function.
Matlab uses floating point math up to 16 digits of precision (only 5 are displayed).

Why does this n choose r python code not work?

These 2 variations of n choose r code got different answer although followed the correct definition
I saw that this code works,
import math
def nCr(n,r):
f = math.factorial
return f(n) // f(r) // f(n-r)
But mine did not:
import math
def nCr(n,r):
f = math.factorial
return int(f(n) / (f(r) * f(n-r)))
Use test case nCr(80,20) will show the difference in result. Please advise why are they different in Python 3, thank you!
No error message. The right answer should be 3535316142212174320, but mine got 3535316142212174336.
That's because int(a / b) isn't the same as a // b.
int(a / b) evaluates a / b first, which is floating-point division. And floating-point numbers are prone to inaccuracies, roundoff errors and the like, as .1 + .2 == 0.30000000000000004. So, at some point, your code attempts to divide really big numbers, which causes roundoff errors since floating-point numbers are of fixed size, and thus cannot be infinitely precise.
a // b is integer division, which is a different thing. Python's integers can be arbitrarily huge, and their division doesn't cause roundoff errors, so you get the correct result.
Speaking about floating-point numbers being of fixed size. Take a look at this:
>>> import math
>>> f = math.factorial
>>> f(20) * f(80-20)
20244146256600469630315959326642192021057078172611285900283370710785170642770591744000000000000000000
>>> f(80) / _
3.5353161422121743e+18
The number 3.5353161422121743e+18 is represented exactly as shown here: there is no information about the digits after the last 3 in 53...43 because there's nowhere to store it. But int(3.5353161422121743e+18) must put something there! Yet it doesn't have enough information. So it puts whatever it wants to so that float(int(3.5353161422121743e+18)) == 3.5353161422121743e+18.

Python floating point precision sum

I have the following array in python
n = [565387674.45, 321772103.48,321772103.48, 214514735.66,214514735.65,
357524559.41]
if I sum all these elements, I get this:
sum(n)
1995485912.1300004
But, this sum should be:
1995485912.13
In this way, I know about floating point "error". I already used the isclose() function from numpy to check the corrected value, but
how much is this limit? Is there any way to reduce this "error"?
The main issue here is that the error propagates to other operations, for example, the below assertion must be true:
assert (sum(n) - 1995485911) ** 100 - (1995485912.13 - 1995485911) ** 100 == 0.
This is problem with floating point numbers. One solution is having them represented in string form and using decimal module:
n = ['565387674.45', '321772103.48', '321772103.48', '214514735.66', '214514735.65',
'357524559.41']
from decimal import Decimal
s = sum(Decimal(i) for i in n)
print(s)
Prints:
1995485912.13
You could use round(num, n) function which rounds the number to the desired decimal places. So in your example you would use round(sum(n), 2)

Distinguishing large integers from near integers in python

I want to avoid my code mistaking a near integer for an integer. For example, 58106601358565889 has as its square root 241,053,109.00000001659385359763188, but when I used the following boolean test, 58106601358565889 fooled me into thinking it was a perfect square:
a = 58106601358565889
b = math.sqrt(a)
print(b == int(b))
The precision isn't necessarily the problem, because if I re-check, I get the proper (False) conclusion:
print(a == b**2)
What would be a better way to test for a true versus a near integer? The math.sqrt is buried in another definition in my code, and I would like to avoid having to insert a check of a squared square root, if possible. I apologize if this is not a good question; I'm new to python.
import numpy as np
import math
from decimal import *
a = 58106601358565889
b = np.sqrt(a)
c = math.sqrt(a)
d = Decimal(58106601358565889).sqrt()
print(d)
print(int(d))
print(c)
print(int(c))
print(b)
print(int(b))
o/p
241053109.0000000165938535976
241053109
241053109.0
241053109
241053109.0
241053109
I would say use decimal.
Expected code :
from decimal import *
d = Decimal(58106601358565889).sqrt()
print(d == int(d))
o/p
False
This isn't a matter of distinguishing integers from non-integers, because b really is an integer*. The precision of a Python float isn't enough to represent the square root of a to enough digits to get any of its fractional component. The second check you did:
print(a == b**2)
only prints False because while b is an integer, b**2 still isn't a.
If you want to test whether very large integers are exact squares, consider implementing a square root algorithm yourself.
*as in 0 fractional part, not as in isinstance(b, int).
It's not the precision of the int that is the problem - it's the limited precision of floats
>>> import math
>>> math.sqrt(58106601358565889)
241053109.0
>>> math.sqrt(58106601358565889) - 241053109
0.0
I think the double check would be the obvious solution
You could also look at the gmpy2 library. It has a function for calculating the integer square root and also the integer square root plus remainder. There are no precision constraints.
>>> import gmpy2
>>> gmpy2.isqrt(58106601358565889)
mpz(241053109)
>>> gmpy2.isqrt_rem(58106601358565889)
(mpz(241053109), mpz(8))
>>>
Disclaimer: I maintain gmpy2.

Resources