I have a PySpark dataframe-
df = spark.createDataFrame([
("u1", 0),
("u2", 0),
("u3", 1),
("u4", 2),
("u5", 3),
("u6", 2),],
['user_id', 'medals'])
df.show()
Output-
+-------+------+
|user_id|medals|
+-------+------+
| u1| 0|
| u2| 0|
| u3| 1|
| u4| 2|
| u5| 3|
| u6| 2|
+-------+------+
I want to get the distribution of the medals column for all the users. So if there are n unique values in the medals column, I want n columns in the output dataframe with corresponding number of users who received that many medals.
The output for the data given above should look like-
+------- +--------+--------+--------+
|medals_0|medals_1|medals_2|medals_3|
+--------+--------+--------+--------+
| 2| 1| 2| 1|
+--------+--------+--------+--------+
How do I achieve this?
it's a simple pivot:
df.groupBy().pivot("medals").count().show()
+---+---+---+---+
| 0| 1| 2| 3|
+---+---+---+---+
| 2| 1| 2| 1|
+---+---+---+---+
if you need some cosmetic to add the word medals in the column name, then you can do this :
medals_df = df.groupBy().pivot("medals").count()
for col in medals_df.columns:
medals_df = medals_df.withColumnRenamed(col, "medals_{}".format(col))
medals_df.show()
+--------+--------+--------+--------+
|medals_0|medals_1|medals_2|medals_3|
+--------+--------+--------+--------+
| 2| 1| 2| 1|
+--------+--------+--------+--------+
I need to replace null values present in a column in Spark dataframe. Below is the code I tried
df=df.na.fill(0,Seq('c_amount')).show()
But it is throwing me an error NameError: name 'Seq' is not defined
Below is my table
+------------+--------+
|c_account_id|c_amount|
+------------+--------+
| 1| null|
| 2| 123 |
| 3| null|
+------------+--------+
Expected output
+------------+--------+
|c_account_id|c_amount|
+------------+--------+
| 1| 0|
| 2| 123|
| 3| 0|
+------------+--------+
You need to use like this
df = df.fillna("<BLANK>", subset=['col_name'])
I'm trying to group by an ID column in a pyspark dataframe and sum a column depending on the value of another column.
To illustrate, consider the following dummy dataframe:
+-----+-------+---------+
| ID| type| amount|
+-----+-------+---------+
| 1| a| 55|
| 2| b| 1455|
| 2| a| 20|
| 2| b| 100|
| 3| null| 230|
+-----+-------+---------+
My desired output is:
+-----+--------+----------+----------+
| ID| sales| sales_a| sales_b|
+-----+--------+----------+----------+
| 1| 55| 55| 0|
| 2| 1575| 20| 1555|
| 3| 230| 0| 0|
+-----+--------+----------+----------+
So basically, sales will be the sum of amount, while sales_a and sales_b are the sum of amount when type is a or b respectively.
For sales, I know this could be done like this:
from pyspark.sql import functions as F
df = df.groupBy("ID").agg(F.sum("amount").alias("sales"))
For the others, I'm guessing F.when would be useful but I'm not sure how to go about it.
You could create two columns before the aggregation based off of the value of type.
df.withColumn("sales_a", F.when(col("type") == "a", col("amount"))) \
.withColumn("sales_b", F.when(col("type") == "b", col("amount"))) \
.groupBy("ID") \
.agg(F.sum("amount").alias("sales"),
F.sum("sales_a").alias("sales_a"),
F.sum("sales_b").alias("sales_b"))
from pyspark.sql import functions as F
df = df.groupBy("ID").agg(F.sum("amount").alias("sales"))
dfPivot = df.filter("type is not null").groupBy("ID").pivot("type").agg(F.sum("amount").alias("sales"))
res = df.join(dfPivot, df.id== dfPivot.id,how='left')
Then replace null with 0.
This is generic solution will work irrespective of values in type column.. so if type c is added in dataframe then it will create column _c
Related question: How to drop columns which have same values in all rows via pandas or spark dataframe?
So I have a pyspark dataframe, and I want to drop the columns where all values are the same in all rows while keeping other columns intact.
However the answers in the above question are only for pandas. Is there a solution for pyspark dataframe?
Thanks
You can apply the countDistinct() aggregation function on each column to get count of distinct values per column. Column with count=1 means it has only 1 value in all rows.
# apply countDistinct on each column
col_counts = df.agg(*(countDistinct(col(c)).alias(c) for c in df.columns)).collect()[0].asDict()
# select the cols with count=1 in an array
cols_to_drop = [col for col in df.columns if col_counts[col] == 1 ]
# drop the selected column
df.drop(*cols_to_drop).show()
You can use approx_count_distinct function (link) to count the number of distinct elements in a column. In case there is just one distinct, the remove the corresponding column.
Creating the DataFrame
from pyspark.sql.functions import approx_count_distinct
myValues = [(1,2,2,0),(2,2,2,0),(3,2,2,0),(4,2,2,0),(3,1,2,0)]
df = sqlContext.createDataFrame(myValues,['value1','value2','value3','value4'])
df.show()
+------+------+------+------+
|value1|value2|value3|value4|
+------+------+------+------+
| 1| 2| 2| 0|
| 2| 2| 2| 0|
| 3| 2| 2| 0|
| 4| 2| 2| 0|
| 3| 1| 2| 0|
+------+------+------+------+
Couting number of distinct elements and converting it into dictionary.
count_distinct_df=df.select([approx_count_distinct(x).alias("{0}".format(x)) for x in df.columns])
count_distinct_df.show()
+------+------+------+------+
|value1|value2|value3|value4|
+------+------+------+------+
| 4| 2| 1| 1|
+------+------+------+------+
dict_of_columns = count_distinct_df.toPandas().to_dict(orient='list')
dict_of_columns
{'value1': [4], 'value2': [2], 'value3': [1], 'value4': [1]}
#Storing those keys in the list which have just 1 distinct key.
distinct_columns=[k for k,v in dict_of_columns.items() if v == [1]]
distinct_columns
['value3', 'value4']
Drop the columns having distinct values
df=df.drop(*distinct_columns)
df.show()
+------+------+
|value1|value2|
+------+------+
| 1| 2|
| 2| 2|
| 3| 2|
| 4| 2|
| 3| 1|
+------+------+
I'm performing computations based on 3 different PySpark DataFrames.
This script works in the sense that it performs the computation as it should, however, I struggle with working properly with the results of said computation.
import sys
import numpy as np
from pyspark import SparkConf, SparkContext, SQLContext
sc = SparkContext("local")
sqlContext = SQLContext(sc)
# Dummy Data
df = sqlContext.createDataFrame([[0,1,0,0,0],[1,1,0,0,1],[0,0,1,0,1],[1,0,1,1,0],[1,1,0,0,0]], ['p1', 'p2', 'p3', 'p4', 'p5'])
df.show()
+---+---+---+---+---+
| p1| p2| p3| p4| p5|
+---+---+---+---+---+
| 0| 1| 0| 0| 0|
| 1| 1| 0| 0| 1|
| 0| 0| 1| 0| 1|
| 1| 0| 1| 1| 0|
| 1| 1| 0| 0| 0|
+---+---+---+---+---+
# Values
values = sqlContext.createDataFrame([(0,1,'p1'),(None,1,'p2'),(0,0,'p3'),(None,0, 'p4'),(1,None,'p5')], ('f1', 'f2','index'))
values.show()
+----+----+-----+
| f1| f2|index|
+----+----+-----+
| 0| 1| p1|
|null| 1| p2|
| 0| 0| p3|
|null| 0| p4|
| 1|null| p5|
+----+----+-----+
# Weights
weights = sqlContext.createDataFrame([(4,3,'p1'),(None,1,'p2'),(2,2,'p3'),(None, 3, 'p4'),(3,None,'p5')], ('f1', 'f2','index'))
weights.show()
+----+----+-----+
| f1| f2|index|
+----+----+-----+
| 4| 3| p1|
|null| 1| p2|
| 2| 2| p3|
|null| 3| p4|
| 3|null| p5|
+----+----+-----+
# Function: it sums the vector W for the values of Row equal to the value of V and then divide by the length of V.
# If there a no similarities between Row and V outputs 0
def W_sum(row,v,w):
if len(w[row==v])>0:
return float(np.sum(w[row==v])/len(w))
else:
return 0.0
For each of the columns and for each row in Data, the above function is applied.
# We iterate over the columns of Values (except the last one called index)
for val in values.columns[:-1]:
# we filter the data to work only with the columns that are defined for the selected Value
defined_col = [i[0] for i in values.where(F.col(val) >= 0).select(values.index).collect()]
# we select only the useful columns
df_select= df.select(defined_col)
# we retrieve the reference value and weights
V = np.array(values.where(values.index.isin(defined_col)).select(val).collect()).flatten()
W = np.array(weights.where(weights.index.isin(defined_col)).select(val).collect()).flatten()
W_sum_udf = F.udf(lambda row: W_sum(row, V, W), FloatType())
df_select.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in df_select.columns))))
This gives :
+---+---+---+---+---+---+
| p1| p2| p3| p4| p5| f1|
+---+---+---+---+---+---+
| 0| 1| 0| 0| 0|2.0|
| 1| 1| 0| 0| 1|1.0|
| 0| 0| 1| 0| 1|2.0|
| 1| 0| 1| 1| 0|0.0|
| 1| 1| 0| 0| 0|0.0|
+---+---+---+---+---+---+
It added the column to the sliced DataFrame as I asked it to. The problem is that I would rather collect the data into a new one that I could access at the end to consult the results.
It it possible to grow (somewhat efficiently) a DataFrame in PySpark as I would with pandas?
Edit to make my goal clearer:
Ideally I would get a DataFrame with the just the computed columns, like this:
+---+---+
| f1| f2|
+---+---+
|2.0|1.0|
|1.0|2.0|
|2.0|0.0|
|0.0|0.0|
|0.0|2.0|
+---+---+
There are some issues with your question...
First, your for loop will produce an error, since df_select in the last line is nowhere defined; there is also no assignment at the end (what does it produce?).
Assuming that df_select is actually your subsubsample dataframe, defined some lines before, and that your last line is something like
new_df = subsubsample.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in subsubsample.columns))))
then your problem starts getting more clear. Since
values.columns[:-1]
# ['f1', 'f2']
the result of the whole loop would be just
+---+---+---+---+---+
| p1| p2| p3| p4| f2|
+---+---+---+---+---+
| 0| 1| 0| 0|1.0|
| 1| 1| 0| 0|2.0|
| 0| 0| 1| 0|0.0|
| 1| 0| 1| 1|0.0|
| 1| 1| 0| 0|2.0|
+---+---+---+---+---+
i.e. with only the column f2 included (natural, since the results with f1 are simply overwritten).
Now, as I said, assuming that the situation is like this, and that your problem is actually how to have both columns f1 & f2 together rather in different dataframes, you can just forget subsubsample and append columns to your initial df, possibly dropping afterwards the unwanted ones:
init_cols = df.columns
init_cols
# ['p1', 'p2', 'p3', 'p4', 'p5']
new_df = df
for val in values.columns[:-1]:
# we filter the data to work only with the columns that are defined for the selected Value
defined_col = [i[0] for i in values.where(F.col(val) >= 0).select(values.index).collect()]
# we retrieve the reference value and weights
V = np.array(values.where(values.index.isin(defined_col)).select(val).collect()).flatten()
W = np.array(weights.where(weights.index.isin(defined_col)).select(val).collect()).flatten()
W_sum_udf = F.udf(lambda row: W_sum(row, V, W), FloatType())
new_df = new_df.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in defined_col)))) # change here
# drop initial columns:
for i in init_cols:
new_df = new_df.drop(i)
The resulting new_df will be:
+---+---+
| f1| f2|
+---+---+
|2.0|1.0|
|1.0|2.0|
|2.0|0.0|
|0.0|0.0|
|0.0|2.0|
+---+---+
UPDATE (after comment): To force the division in your W_sum function to be a float, use:
from __future__ import division
new_df now will be:
+---------+----+
| f1| f2|
+---------+----+
| 2.0| 1.5|
|1.6666666|2.25|
|2.3333333|0.75|
| 0.0|0.75|
|0.6666667|2.25|
+---------+----+
with f2 exactly as it should be according to your comment.