how to provide test input to an rnn model trained thru sequenceexample - python-3.x

I'm trying to follow the approach of feeding training data thru sequence examples as described in the link
https://www.tensorflow.org/programmers_guide/reading_data for training an LSTM based RNN model via input pipelines and queues. since these examples are symbolic references, I'm unclear how we can feed a single or batch of test inputs on a trained model. A similar query was asked on the forum (Sample from tensorflow LSTM model when using symbolic batch inputs) but the solution is unclear. any suggestions here

after some search this is the best i could get from the link https://github.com/dennybritz/tf-rnn/issues/3
Different ways to do this:
1) Create a different graph for training/inference (this is typically recommended) with different tensors as inputs.
2) Use tf.contrib.learn.Estimator and it's input function
3) Something like sess.run([train_op], feed_dict={batched_data: YOUR_CUSTOM_DATA}) should work

Related

How can I define input and output tensors in PyTorch?

I'm new to neural networks and PyTorch in particular, so please excuse my question if it turns out to be a simple one. I am creating a simple neural network that can predict the presence of lung cancer based on a given dataset.
I've reached the point where I have to create my input and output tensors with which to train my network. Unfortunately, I've run into an error while creating the tensors, and I'm not sure how to resolve it.
You need to be using vectors/matrices of numbers to create tensors. Right now you seem to be passing strings describing the data rather than the data itself.

Bert for relation extraction

i am working with bert for relation extraction from binary classification tsv file, it is the first time to use bert so there is some points i need to understand more?
how can i get an output like giving it a test data and show the classification results whether it is classified correctly or not?
how bert extract features of the sentences, and is there a method to know what are the features that is chosen?
i used once the hidden layers and another time i didn't use i got the accuracy of not using the hidden layer higher than using it, is there an reason for that?

Given inputs and outputs vector, which model is best for predicting unknown data?

I don't have much experience with training neural networks. I have 4 variable vectors as input and I have respectively 3 variable output vector. I want to create a neural network that takes these inputs and outputs which have some unknown correlation(might not be linear) between them and train. So that when I put previously untrained data through it should predict the correlated output.
I was wondering,
What type of model should I use in such scenarios? Is it Restricted boltzmann machine, regression, GAN, etc?
What library is easiest to learn and implement for such a model? eg:- TensorFlow, PyTorch, etc
If images were involved which can be processed as fft arrays, would the model change.
I did find this answer, but I am not satisfied with it.
Please let me know if there are any functions or other points you would like me to know. Any help is much appreciated.
A multilayer perceprton is a good place to start.
Keras is the highest level/easiest to use library I have used.
If you are working with images or spatially structured data a convolutional neural network will probably work best.

Feed an unseen example to a pre-trained model made in Keras

I've implemented a neural network using Keras. Once trained and tested for final test accuracy, using a matrix with a bunch of rows containing features (plus corresponding labels), I have a model which I should be able to use for prediction.
How can I feed a single unseen example, meaning a feature vector to the model, to obtain a class prediction?
I've looked at their documentation here but could not find a method for it.
What you want is the predict method, it takes a batch of input samples and produces predictions, which are the outputs computer by your network. To feed a single example you can just put it inside a numpy ndarray wrapper.

Extract CNN features using Caffe and train using SVM

I want to extract features using caffe and train those features using SVM. I have gone through this link: http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html. This links provides how we can extract features using caffenet. But I want to use Lenet architecture here. I am unable to change this line of command for Lenet:
./build/tools/extract_features.bin models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel examples/_temp/imagenet_val.prototxt fc7 examples/_temp/features 10 leveldb
And also, after extracting the features, how to train these features using SVM? I want to use python for this. For eg: If I get features from this code:
features = net.blobs['pool2'].data.copy()
Then, how can I train these features using SVM by defining my own classes?
You have two questions here:
Extracting features using LeNet
Training an SVM
Extracting features using LeNet
To extract the features from LeNet using the extract_features.bin script you need to have the model file (.caffemodel) and the model definition for testing (.prototxt).
The signature of extract_features.bin is here:
Usage: extract_features pretrained_net_param feature_extraction_proto_file extract_feature_blob_name1[,name2,...] save_feature_dataset_name1[,name2,...] num_mini_batches db_type [CPU/GPU] [DEVICE_ID=0]
So if you take as an example val prototxt file this one (https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt), you can change it to the LeNet architecture and point it to your LMDB / LevelDB. That should get you most of the way there. Once you did that and get stuck, you can re-update your question or post a comment here so we can help.
Training SVM on top of features
I highly recommend using Python's scikit-learn for training an SVM from the features. It is super easy to get started, including reading in features saved from Caffe's format.
Very lagged reply, but should help.
Not 100% what you want, but I have used the VGG-16 net to extract face features using caffe and perform a accuracy test on a small subset of the LFW dataset. Exactly what you needed is in the code. The code creates classes for training and testing and pushes them into the SVM for classification.
https://github.com/wajihullahbaig/VGGFaceMatching

Resources