Is it possible to search for beacon data (uuid, url, ...) with a progressive web application using just web technologies that is without using native mobile technologies (Android, ios, ...)?
Thanks in advance.
Unfortunately, this is not possible as of July 2020. While Google has been working on the WebBluetooth project to bring support for many bluetooth operations to the browser, at least in Google Chrome implementations on Android 6+, Mac or ChromeOS.
Scanning for beacons is not yet possible as of this writing. The API requires that the OS scan for devices matching a requested criteria, and then let the user choose a device to connect to using a user interface. This essentially rules out beacon detection.
Bluetooth scanning APIs are still in draft form here.
EDIT: The APIs mentioned by #zurfyx in the answer below allow you to scan for and connect to an advertised GATT service, but do not allow you to read the data in the advertisement. This is a critical distinction, as reading the data in the advertisement is the key capability required for actual bluetooth beacon detection. That capability is missing from that API. Without that capability, it is impossible to detect a beacon, it is only possible to connect to a BLE device that might be an Eddystone or other service advertisement-based beacon.
UPDATE July 2020: Safari will not be getting any WebBluetooth APIs at all due to privacy concerns, according to a June 2020 announcement by Apple This makes Bluetooth scanning impossible on iOS we apps for the foreseeable future.
As of July 2020, Chrome does not support scanning arbitrary advertisements. See status here: https://github.com/WebBluetoothCG/web-bluetooth/blob/master/implementation-status.md
Disclaimer: I wrote eddystone-web-bluetooth (a library which makes it easy to read and write to an Eddystone device). github#eddystone-web-bluetooth npm#eddystone-web-bluetooth
It is possible to scan for Bluetooth devices by using the Web Bluetooth API (currently supported only by Chrome).
By using Bluetooth GATT service, you can connect to Eddystone devices and send/receive data by communicating following their public specifications (which are basically a list of request codes, and the format in which to send and expect their responses).
These services include information such as:
URL
Advertising interval
Lock state
and more
By using the Bluetooth standard information you can get to know the most generic device information, such as its id and name:
navigator.bluetooth.requestDevice
#beaufortfrancois wrote the probably first Eddystone Web Bluetooth configuration code (source code / demo), so it is probably worth a read if you want to dig more into this. I learned a lot from it.
Related
I am doing some research on the WebUSB API for our company because we are going to start to manufacture devices in house.
Our current device manufacture comes with an application so the team can plug the device into a computer and diagnose it. Their application allows us to read outputs from the device, as well as pushing commands/configuration to the device over a wired connection.
Since this device is 100% ours, we are also responsible for building out the diagnostic tooling. We need some sort of interface that allows a user to read outputs and send commands/configuration to the device over a wired USB connection.
Is the webUSB the correct API? If not, what are some suggestions for accomplishing the requirement? Are we limited to building some sort of desktop or mobile application?
I would recommend resources below to read to help you understand if the WebUSB API fits your needs or not:
https://web.dev/devices-introduction/ helps you pick the appropriate API to communicate with a hardware device of your choice.
https://web.dev/build-for-webusb/ explains how to build a device to take full advantage of the WebUSB API.
From what you describe, WebUSB isn't strictly required but won't hurt either.
First and foremost, you will need to implement the USB interfaces reading data and sending configurations. It will be a custom protocol, and not one of the standard USB device classes such as HID, video or mass storage. The details of the protocol and if you use control, interrupt or bulk transfers is your choice.
I'm assuming you will connect the devices to Windows PCs, and you likely don't want to put money into writing device drivers. If so, the easiest approach is to add the required descriptors and control requests required for Microsoft OS 2.0 Descriptors. That way, the WinUSB driver will be installed automatically when the device is plugged in.
Using the WinUSB API, a Windows application will then be able to communicate with the USB device. No additional drivers are needed. (On macOS and Linux it's even easier as you don't need the Microsoft OS 2.0 Descriptors in the first place.)
On top of that you can implement the additional descriptors and control requests for WebUSB. It will provide the additional benefit that you can write a web application (instead of a native application) for communicating with the USB device. (Currently, you are restricted to the Chrome browser.) WebUSB devices should implement the WinUSB descriptors as the alternative (.INF files, manual installation process) is a pain.
The already mentioned web page https://web.dev/build-for-webusb/ is a complete example of how to implement it.
We're designing a Bluetooth LE peripheral that implements some primary GATT service and needs to advertise the existence of the service as well as a few bytes of data related to the service. The device is intended to connect to arbitrary consumer smartphones (therefore mostly Android and iOS). We use a 16-bit service UUID and plan to advertise the related data via the advertising data type 0x16 (Service Data - 16 bit UUID). Due to the limited size of the advertising PDU, we'd like to avoid any additional advertising data, most notably we'd like to avoid advertising the same UUID also via data type 0x03 (Complete List of 16-bit UUIDs).
As the device should be used with consumer smartphones, compatibility is a major concern and therefore the compliance with relevant standards is as well. A critical aspect seems to be that the smartphone OSes should be able to do efficient filtering for devices advertising our service, so the app may run and listen in the background.
A safe approach would be to advertise both, 'service data' as well as 'complete list of UUIDs', because all OSes are certainly able to filter for UUIDs advertised in the latter, but this would exceed the size of the advertising PDU. We could also configure the mobile's BLE scanner to return all BLE devices nearby, without any filtering and do the filtering in our own code, but this wouldn't be efficient and wouldn't allow to run in the background.
We did some testing with different smartphones (Android and iPhones, older and newer ones) and at the first glance filtering for service UUIDs when only the service data type is advertised, seems to work just fine. However, we couldn't find any documentation (neither for Android nor for iOS) that definitely states that this is a supported scenario, so we can't be sure that it works on all phones and also in the future.
The Apple Accessory Design Guidelines section 36.4 refers to the Bluetooth Core Specification Supplement, Part A and states the following:
The advertising data sent by the accessory should contain at least the following information as described in the Bluetooth Core Specification Supplement, Part A:
Flags
TX Power Level
Local Name
Services
[...]
The primary services should always be advertised in the advertising PDU.
However, this doesn't make clear which kind of advertising data type should be used and the same is true for the Android documentation.
With this context my questions are:
Is it a good idea to advertise the primary GATT service solely via the 'service data' data type?
Would this even comply to the Bluetooth Core Specification?
Is there any documentation for Android and iOS that makes clear, whether this is a supported scenario from the OS standpoint (I actually don't mean the OS source code)?
Are there any Android (>= 5.0) or iOS (>= 11) devices that would not be able to filter for service UUIDs advertised via the 'service data' data type?
What is the best practice in such a case, given the limited size of the advertising PDU?
Thank you for your thoughts!
Over the last couple of years I have been looking for an easy way to control a few relays from Javascript. I want to build a web App to control starting sequence horns for sailing races.
I recently discovered webUSB and it seems like exactly what I need. A direct connection from JS in chrome to the USB world. Simple coding in a language I already use.
On the hardware side I am having trouble finding a product that is compatible. Googling USB Relay finds 100's of products that all seem to rely on some proprietary SW for the OS. I can find lots of educational demo's that turn an LED on and off.
Does anyone have any ideas where to find such a product?
While I'm sure you will be able to find USB relays that can be controlled via WebUSB, most USB relays will probably come with some kind of serial port driver, e.g. https://numato.com/product/1-channel-usb-powered-relay-module uses a CDC serial port driver. These can be controlled using Web Serial, available in Chrome 77 and later behind a feature flag. For a tutorial, see https://codelabs.developers.google.com/codelabs/web-serial/
Explainer: https://github.com/WICG/serial/blob/gh-pages/EXPLAINER.md
API docs: https://wicg.github.io/serial/
If you search for "5V USB Relay Programmable Computer Control For Smart Home" on eBay, you will also find low-cost relays that use HID instead. The advantage of these is that you don't need any serial port or USB drivers, as it will use the operating system's built-in HID drivers. For that you can use WebHID. For more info, see https://github.com/robatwilliams/awesome-webhid.
I am developing an app that controls a product's operation. The communication is via BLE. My configuration is
App - Peripheral (iOS, Android)
Product - Central (uses Laird BT900 module)
iOS as a peripheral works fine (pairing and bonding) ; Android PIN pairing works fine, but subsequent bonding (or reconnect when in range) there are a lot of issues and termination of connection. I am using the supported list of devices for Android BLE and I also understand that there are many known issues that come with different manufacturers/chipset vendors
The issue I am getting is, as seen by nrfConnect, is with descriptors. Android app doesnt show descriptors when seen in nrfConnect whereas iOS shows. I do not know what is the difference
Is it a common practice to use a phone as a peripheral ? Or is it a risk - because this is a medical device.
Are there any best practices for Android as a peripheral ?
I have following back up plans in case Android issue is not resolved. I think following would work on any BLE supported phones without having any issues with the variability.
Plan A : PIN pairing on every connection with the product. This is the most secure and most annoying
Plan B : Implement just works pairing with a app layer password before taking control of the product.
Question : Is just works safe and encrypted ? Is it snoop-safe or MITM-safe ?
Thanks in advance!
A few thoughts from your questions:
1a. (From my Android experience) I think its uncommon to have the phone be the peripheral. To my knowledge all iOS devices support peripheral mode but only a very small subset of Android devices are able to support it. I say this because I've been experimenting with BTLE beacons using the AltBeacon library. From this work I have discovered that only certain Android phones can broadcast BTLE advertise packets. Given that BTLE advertising is the first step in initiating a BTLE session I imagine that this prevents many Android phones from being compatible with peripheral mode.
If all of your users can use an iOS device, then you're set, otherwise this may be a problem.
1b) I can't speak to the specific risk of using a mobile device with your medical device, that depends on what the medical device is doing and how you're using the mobile app.
2) See 1a
3) The specific encryption scheme you used is also based on your product's risk profile. I would say that Just Works is not an ideal solution. The just works pairing process is not snoop-safe and can be re-initiated via a MITM. Other than that I can't speak to the strength of BTLE encryption.
I am using a generic BLE plugin for PhoneGap when developing a BLE enabled application. It gives me beacons identification and RSSI, but reading more advanced attributes like battery status or TX power require specific communication with a beacon, which is manufacture dependant as far as I know. Does anybody of you know, how to read for example the battery status from Stick'n'Find BLE beacons. So far I have been able to discover, that it's necessary to connect to the beacon and after it a characteristic has to be read. But here, I am lost.
Marek
You must use a manufacturer SDK to do this. One user reported:
I reached out to the manufacture and they have an SDK (and sample app), you have to sign up for a free account to get access: https://bluvision.com/developer/beeks-beacons-sdk/ http://bluvision.com/developer/wp-content/uploads/sites/2/2014/09/Android-SDK.zip
See here: https://stackoverflow.com/a/26424648/1461050