Why does StandardScaler not attach metadata to the output column? - apache-spark

I noticed that the ml StandardScaler does not attach metadata to the output column:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature._
val df = spark.read.option("header", true)
.option("inferSchema", true)
.csv("/path/to/cars.data")
val strId1 = new StringIndexer()
.setInputCol("v7")
.setOutputCol("v7_IDX")
val strId2 = new StringIndexer()
.setInputCol("v8")
.setOutputCol("v8_IDX")
val assmbleFeatures: VectorAssembler = new VectorAssembler()
.setInputCols(Array("v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7_IDX"))
.setOutputCol("featuresRaw")
val scalerModel = new StandardScaler()
.setInputCol("featuresRaw")
.setOutputCol("scaledFeatures")
val plm = new Pipeline()
.setStages(Array(strId1, strId2, assmbleFeatures, scalerModel))
.fit(df)
val dft = plm.transform(df)
dft.schema("scaledFeatures").metadata
Gives:
res1: org.apache.spark.sql.types.Metadata = {}
This example works on this dataset (just adapt path in code above).
Is there a specific reason for this? Is it likely that this feature will be added to Spark in the future? Any suggestions for a workaround that does not include duplicating the StandardScaler?

While discarding metadata is probably not the most fortunate choice, scaling indexed categorical features doesn't make any sense. Values returned by the StringIndexer are just labels.
If you want to scale numerical features, it should be a separate stage:
val numericAssembler: VectorAssembler = new VectorAssembler()
.setInputCols(Array("v0", "v1", "v2", "v3", "v4", "v5", "v6"))
.setOutputCol("numericFeatures")
val scaler = new StandardScaler()
.setInputCol("numericFeatures")
.setOutputCol("scaledNumericFeatures")
val finalAssembler: VectorAssembler = new VectorAssembler()
.setInputCols(Array("scaledNumericFeatures", "v7_IDX"))
.setOutputCol("features")
new Pipeline()
.setStages(Array(strId1, strId2, numericAssembler, scaler, finalAssembler))
.fit(df)
Keeping in mind concerns raised at the beginning of this answer, you can also try copying the metadata:
val result = plm.transform(df).transform(df =>
df.withColumn(
"scaledFeatures",
$"scaledFeatures".as(
"scaledFeatures",
df.schema("featuresRaw").metadata)))
esult.schema("scaledFeatures").metadata
{"ml_attr":{"attrs":{"numeric":[{"idx":0,"name":"v0"},{"idx":1,"name":"v1"},{"idx":2,"name":"v2"},{"idx":3,"name":"v3"},{"idx":4,"name":"v4"},{"idx":5,"name":"v5"},{"idx":6,"name":"v6"}],"nominal":[{"vals":["ford","chevrolet","plymouth","dodge","amc","toyota","datsun","vw","buick","pontiac","honda","mazda","mercury","oldsmobile","peugeot","fiat","audi","chrysler","volvo","opel","subaru","saab","mercedes","renault","cadillac","bmw","triumph","hi","capri","nissan"],"idx":7,"name":"v7_IDX"}]},"num_attrs":8}}

Related

Spark ML- prediction in KMeans

I have created a KMeans model using Spark ML methods.
val kmeans = new KMeans()
val model = kmeans.fit(df)
I got my model ready. But how to predict that in which cluster new data points will fall. In MLlib, model.predict(Vector) predict the cluster for the new data points. I saw the transform method on the model but its not working.
Thanks Jacek Laskowski for clarifying Oli. Its working fine for me now. It was a simple mistake. Below is the whole code.
val conf = new SparkConf().setMaster("local").setAppName("ml Kmeans")
val spark = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val trainingData = spark.read.json(spark.sparkContext.wholeTextFiles("file:/home/iot/data/traingJson.json").values)
val parsedData = trainingData.select("value.humidity", "value.speed", "value.temperature", "value.vibration")
val assembler = new VectorAssembler().setInputCols(Array("humidity", "speed", "temperature", "vibration")).setOutputCol("features")
val df = assembler.transform(parsedData)
val kmeans = new KMeans()
val model = kmeans.fit(df)
model.write.save("file:/home/iot/data/model1")
//--------------------------------Testing the Model------------------------
val uploadModel=KMeansModel.load("file:/home/iot/data/model1")
val testData = spark.read.json(spark.sparkContext.wholeTextFiles("file:/home/iot/data/testJson.json").values).select("value.humidity", "value.speed", "value.temperature", "value.vibration")
val assembler=new VectorAssembler().setInputCols(Array("humidity","speed","temperature","vibration")).setOutputCol("features")
val df = assembler.transform(testData)
model.transform(df).show(false)

generating vector from text data for KMeans using spark

I am new to Spark and Machine Learning. I am trying to cluster using KMeans Some data like
1::Hi How are you
2::I am fine, how about you
In the data, separator is :: and Actual text to cluster is second column that has text data.
After reading on the spark official page and numerous articles I have written following code but I am not able to generate the vector to provide as input to KMeans.train step.
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
val sc = new SparkContext("local", "test")
val sqlContext= new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val rawData = sc.textFile("data/mllib/KM.txt").map(line => line.split("::")(1))
val sentenceData = rawData.toDF("sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val clusters = KMeans.train(featurizedData, 2, 10)
I am getting following error
<console>:27: error: type mismatch;
found : org.apache.spark.sql.DataFrame
(which expands to) org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]
required: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector]
val clusters = KMeans.train(featurizedData, 2, 10)
Please suggest how to process input data for KMeans
Thanks in advance.
Finaly I get it working after replacing the following code.
val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val clusters = KMeans.train(featurizedData, 2, 10)
With
val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol).setOutputCol("features")
val kmeans = new KMeans().setK(2).setFeaturesCol("features").setPredictionCol("prediction")
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, kmeans))

Spark ML - create a features vector from new data element to predict on

tl;dr
I have fit a LinearRegression model in Spark 2.10 - after using StringIndexer and OneHotEncoder I have a ~44 element features vector. For a new bit of data I'd like to get a prediction on, how can I create a features vector from the new data element?
More Detail
First, this is completely contrived example to learn how to do this. Using logs with the fields:
"elapsed_time", "api_name", "method", and "status_code"
We will create a model of label elapsed_time and use the other fields as our feature set. The complete code will be shared below.
Steps - condensed
Read in our data to a DataFrame
Index each of our features using StringIndexer
OneHotEncode indexed features with OneHotEncoder
Create our features vector with VectorAssembler
Split data into training and testing sets
Fit the model & predict on test data
Results were horrible, but like I said this is a contrived exercise...
What I need to learn how to do
If a new log entry came in to a streaming application for example, how would I go about creating a feature vector from the new data and pass it in to predict()?
A new log entry might be:
{api_name":"/sample_api_1/v2","method":"GET","status_code":"200","elapsed_time":39}
Post VectorAssembler
status_code_vector
(14,[0],[1.0])
api_name_vector
(27,[0],[1.0])
method_vector
(3,[0],[1.0])
features vector
(44,[0,14,41],[1.0,1.0,1.0])
Le Code
%spark
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer, VectorAssembler, StringIndexerModel, VectorSlicer}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.sql.DataFrame
val logs = sc.textFile("/Users/z001vmk/data/sample_102M.txt")
val dfLogsRaw: DataFrame = spark.read.json(logs)
val dfLogsFiltered = dfLogsRaw.filter("status_code != 314").drop("extra_column")
// Create DF with our fields of concern.
val dfFeatures: DataFrame = dfLogsFiltered.select("elapsed_time", "api_name", "method", "status_code")
// Contrived goal:
// Use elapsed time as our label given features api_name, status_code, & method.
// Train model on small (100Mb) dataset
// Be able to predict elapsed_time given a new record similar to this example:
// --> {api_name":"/sample_api_1/v2","method":"GET","status_code":"200","elapsed_time":39}
// Indexers
val statusCodeIdxr: StringIndexer = new StringIndexer().setInputCol("status_code").setOutputCol("status_code_idx").setHandleInvalid("skip")
val apiNameIdxr: StringIndexer = new StringIndexer().setInputCol("api_name").setOutputCol("api_name_idx").setHandleInvalid("skip")
val methodIdxr: StringIndexer = new StringIndexer().setInputCol("method").setOutputCol("method_idx").setHandleInvalid("skip")
// Index features:
val dfIndexed0: DataFrame = statusCodeIdxr.fit(dfFeatures).transform(dfFeatures)
val dfIndexed1: DataFrame = apiNameIdxr.fit(dfIndexed0).transform(dfIndexed0)
val indexed: DataFrame = methodIdxr.fit(dfIndexed1).transform(dfIndexed1)
// OneHotEncoders
val statusCodeEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(statusCodeIdxr.getOutputCol).setOutputCol("status_code_vec")
val apiNameEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(apiNameIdxr.getOutputCol).setOutputCol("api_name_vec")
val methodEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(methodIdxr.getOutputCol).setOutputCol("method_vec")
// Encode feature vectors
val encoded0: DataFrame = statusCodeEncoder.transform(indexed)
val encoded1: DataFrame = apiNameEncoder.transform(encoded0)
val encoded: DataFrame = methodEncoder.transform(encoded1)
// Limit our dataset to necessary elements:
val dataset0 = encoded.select("elapsed_time", "status_code_vec", "api_name_vec", "method_vec").withColumnRenamed("elapsed_time", "label")
// Assemble feature vectors
val assembler: VectorAssembler = new VectorAssembler().setInputCols(Array("status_code_vec", "api_name_vec", "method_vec")).setOutputCol("features")
val dataset1 = assembler.transform(dataset0)
dataset1.show(5,false)
// Prepare the dataset for training (optional):
val dataset: DataFrame = dataset1.select("label", "features")
dataset.show(3,false)
val Array(training, test) = dataset.randomSplit(Array(0.8, 0.2))
// Create our Linear Regression Model
val lr: LinearRegression = new LinearRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setLabelCol("label").setFeaturesCol("features")
val lrModel = lr.fit(training)
val predictions = lrModel.transform(test)
predictions.show(20,false)
This can all be pasted into a Zeppelin notebook if you're interested.
Wrapping up
So, what I've been scouring about for is how to transform new data into a ~35ish element feature vector and and use the model fit to the training data to transform it and get a prediction. I suspect there is metadata either held in the model itself or that would need to be maintained from the StringIndexers in this case - but that's what I cannot find.
Very happy to be pointed to docs or examples - all help appreciated.
Thank you!
Short answer: Pipeline models.
Just to make sure you understand, though, you don't want to create your model when you start an app, if you don't have to. Unless you're going to use DataSets and feedback, it's just silly. Create your model in a Spark Submit session (or use a notebook session like Zeppelin) and save it down. That's doing your data science.
Most DS guys hand the model over, and let the DevOps/Data Engineers use it. All they have to do is call a .predict() on the object after it's been loaded into memory.
After going down the road of using a PipelineModel, this became quite simple. Hat tip to #tadamhicks for getting me to look at piplines sooner than later.
Below is an updated code block that performs basically the same model creation, fit, and prediction as above but does so using pipelines and has an added bit where we predict on a newly created DataFrame to simulate how to predict on new data.
There is likely a cleaner way to rename/create our label column, but we'll leave that as a future enhancement.
%spark
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer, VectorAssembler, StringIndexerModel, VectorSlicer}
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.sql.DataFrame
val logs = sc.textFile("/data/sample_102M.txt")
val dfLogsRaw: DataFrame = spark.read.json(logs)
val dfLogsFiltered = dfLogsRaw.filter("status_code != 314").drop("extra_column")
.select("elapsed_time", "api_name", "method", "status_code","cache_status")
.withColumnRenamed("elapsed_time", "label")
val Array(training, test) = dfLogsFiltered.randomSplit(Array(0.8, 0.2))
// Indexers
val statusCodeIdxr: StringIndexer = new StringIndexer().setInputCol("status_code").setOutputCol("status_code_idx").setHandleInvalid("skip")
val apiNameIdxr: StringIndexer = new StringIndexer().setInputCol("api_name").setOutputCol("api_name_idx").setHandleInvalid("skip")
val methodIdxr: StringIndexer = new StringIndexer().setInputCol("method").setOutputCol("method_idx").setHandleInvalid("skip")//"cache_status"
val cacheStatusIdxr: StringIndexer = new StringIndexer().setInputCol("cache_status").setOutputCol("cache_status_idx").setHandleInvalid("skip")
// OneHotEncoders
val statusCodeEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(statusCodeIdxr.getOutputCol).setOutputCol("status_code_vec")
val apiNameEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(apiNameIdxr.getOutputCol).setOutputCol("api_name_vec")
val methodEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(methodIdxr.getOutputCol).setOutputCol("method_vec")
val cacheStatusEncoder: OneHotEncoder = new OneHotEncoder().setInputCol(cacheStatusIdxr.getOutputCol).setOutputCol("cache_status_vec")
// Vector Assembler
val assembler: VectorAssembler = new VectorAssembler().setInputCols(Array("status_code_vec", "api_name_vec", "method_vec", "cache_status_vec")).setOutputCol("features")
val lr: LinearRegression = new LinearRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setLabelCol("label").setFeaturesCol("features")
val pipeline = new Pipeline().setStages(Array(statusCodeIdxr, apiNameIdxr, methodIdxr, cacheStatusIdxr, statusCodeEncoder, apiNameEncoder, methodEncoder, cacheStatusEncoder, assembler, lr))
val plModel: PipelineModel = pipeline.fit(training)
plModel.write.overwrite().save("/tmp/spark-linear-regression-model")
plModel.transform(test).select("label", "prediction").show(5,false)
val dataElement: String = """{"api_name":"/sample_api/v2","method":"GET","status_code":"200","cache_status":"MISS","elapsed_time":39}"""
val newDataRDD = spark.sparkContext.makeRDD(dataElement :: Nil)
val newData = spark.read.json(newDataRDD).withColumnRenamed("elapsed_time", "label")
val loadedPlModel = PipelineModel.load("/tmp/spark-linear-regression-model")
loadedPlModel.transform(newData).select("label", "prediction").show

How to cross validate RandomForest model?

I want to evaluate a random forest being trained on some data. Is there any utility in Apache Spark to do the same or do I have to perform cross validation manually?
ML provides CrossValidator class which can be used to perform cross-validation and parameter search. Assuming your data is already preprocessed you can add cross-validation as follows:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
// [label: double, features: vector]
trainingData org.apache.spark.sql.DataFrame = ???
val nFolds: Int = ???
val numTrees: Int = ???
val metric: String = ???
val rf = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
.setNumTrees(numTrees)
val pipeline = new Pipeline().setStages(Array(rf))
val paramGrid = new ParamGridBuilder().build() // No parameter search
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
// "f1" (default), "weightedPrecision", "weightedRecall", "accuracy"
.setMetricName(metric)
val cv = new CrossValidator()
// ml.Pipeline with ml.classification.RandomForestClassifier
.setEstimator(pipeline)
// ml.evaluation.MulticlassClassificationEvaluator
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(nFolds)
val model = cv.fit(trainingData) // trainingData: DataFrame
Using PySpark:
from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
trainingData = ... # DataFrame[label: double, features: vector]
numFolds = ... # Integer
rf = RandomForestClassifier(labelCol="label", featuresCol="features")
evaluator = MulticlassClassificationEvaluator() # + other params as in Scala
pipeline = Pipeline(stages=[rf])
paramGrid = (ParamGridBuilder.
.addGrid(rf.numTrees, [3, 10])
.addGrid(...) # Add other parameters
.build())
crossval = CrossValidator(
estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=evaluator,
numFolds=numFolds)
model = crossval.fit(trainingData)
To build on zero323's great answer using Random Forest Classifier, here is a similar example for Random Forest Regressor:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.regression.RandomForestRegressor // CHANGED
import org.apache.spark.ml.evaluation.RegressionEvaluator // CHANGED
import org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer}
val numFolds = ??? // Integer
val data = ??? // DataFrame
// Training (80%) and test data (20%)
val Array(train, test) = data.randomSplit(Array(0.8,0.2))
val featuresCols = data.columns
val va = new VectorAssembler()
va.setInputCols(featuresCols)
va.setOutputCol("rawFeatures")
val vi = new VectorIndexer()
vi.setInputCol("rawFeatures")
vi.setOutputCol("features")
vi.setMaxCategories(5)
val regressor = new RandomForestRegressor()
regressor.setLabelCol("events")
val metric = "rmse"
val evaluator = new RegressionEvaluator()
.setLabelCol("events")
.setPredictionCol("prediction")
// "rmse" (default): root mean squared error
// "mse": mean squared error
// "r2": R2 metric
// "mae": mean absolute error
.setMetricName(metric)
val paramGrid = new ParamGridBuilder().build()
val cv = new CrossValidator()
.setEstimator(regressor)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(numFolds)
val model = cv.fit(train) // train: DataFrame
val predictions = model.transform(test)
predictions.show
val rmse = evaluator.evaluate(predictions)
println(rmse)
Evaluator metric source:
https://spark.apache.org/docs/latest/api/scala/#org.apache.spark.ml.evaluation.RegressionEvaluator

How to prepare for training data in mllib

TL;DR;
How do I use mllib to train my wiki data (text & category) for prediction against tweets?
I have trouble figuring out how to convert my tokenized wiki data so that it can be trained through either NaiveBayes or LogisticRegression. My goal is to use the trained model for comparison against tweets*. I've tried using pipelines with LR and HashingTF with IDF for NaiveBayes but I keep getting wrong predictions. Here's what I've tried:
*Note that I would like to use the many categories in the wiki data for my labels...I've only seen binary classification (it's one category or another)....is it possible to do what I want?
Pipeline w LR
import org.apache.spark.rdd.RDD
import org.apache.spark.SparkContext
import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.ml.feature.RegexTokenizer
case class WikiData(category: String, text: String)
case class LabeledData(category: String, text: String, label: Double)
val wikiData = sc.parallelize(List(WikiData("Spark", "this is about spark"), WikiData("Hadoop","then there is hadoop")))
val categoryMap = wikiData.map(x=>x.category).distinct.zipWithIndex.mapValues(x=>x.toDouble/1000).collectAsMap
val labeledData = wikiData.map(x=>LabeledData(x.category, x.text, categoryMap.get(x.category).getOrElse(0.0))).toDF
val tokenizer = new RegexTokenizer()
.setInputCol("text")
.setOutputCol("words")
.setPattern("/W+")
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, lr))
val model = pipeline.fit(labeledData)
model.transform(labeledData).show
Naive Bayes
val hashingTF = new HashingTF()
val tf: RDD[Vector] = hashingTF.transform(documentsAsWordSequenceAlready)
import org.apache.spark.mllib.feature.IDF
tf.cache()
val idf = new IDF().fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
tf.cache()
val idf = new IDF(minDocFreq = 2).fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
//to create tfidfLabeled (below) I ran a map set the labels...but again it seems to have to be 1.0 or 0.0?
NaiveBayes.train(tfidfLabeled)
.predict(hashingTF.transform(tweet))
.collect
ML LogisticRegression doesn't support multinomial classification yet, but it is supported by both MLLib NaiveBayes and LogisticRegressionWithLBFGS. In the first case it should work by default:
import org.apache.spark.mllib.classification.NaiveBayes
val nbModel = new NaiveBayes()
.setModelType("multinomial") // This is default value
.run(train)
but for logistic regression you should provide a number of classes:
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
val model = new LogisticRegressionWithLBFGS()
.setNumClasses(n) // Set number of classes
.run(trainingData)
Regarding preprocessing steps it is a quite broad topic and it is hard to give you a meaningful advice without an access to your data so everything you find below is just a wild guess:
as far I understand you use wiki data for training and tweets for testing. If that's true it is generally speaking a bad idea. You can expect that both sets use significantly different vocabulary, grammar and spelling
simple regex tokenizer can perform pretty well on standardized text but from my experience it won't work well on informal text like tweets
HashingTF can be a good way to obtain a baseline model but it is extremely simplified approach, especially if you don't apply any filtering steps. If you decide to use it you should at least increase number of features or use a default value (2^20)
EDIT (Preparing data for Naive Bayes with IDF)
using ML Pipelines:
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.ml.feature.IDF
import org.apache.spark.sql.Row
val tokenizer = ???
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("rawFeatures")
val idf = new IDF()
.setInputCol(hashingTF.getOutputCol)
.setOutputCol("features")
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, idf))
val model = pipeline.fit(labeledData)
model
.transform(labeledData)
.select($"label", $"features")
.map{case Row(label: Double, features: Vector) => LabeledPoint(label, features)}
using MLlib transformers:
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.feature.{IDF, IDFModel}
val labeledData = wikiData.map(x =>
LabeledData(x.category, x.text, categoryMap.get(x.category).getOrElse(0.0)))
val p = "\\W+".r
val raw = labeledData.map{
case LabeledData(_, text, label) => (label, p.split(text))}
val hashingTF: org.apache.spark.mllib.feature.HashingTF = new HashingTF(1000)
val tf = raw.map{case (label, text) => (label, hashingTF.transform(text))}
val idf: org.apache.spark.mllib.feature.IDFModel = new IDF().fit(tf.map(_._2))
tf.map{
case (label, rawFeatures) => LabeledPoint(label, idf.transform(rawFeatures))}
Note: Since transformers require JVM access MLlib version won't work in PySpark. If you prefer Python you have to split data transform and zip.
EDIT (Preparing data for ML algorithms):
While following piece of code looks valid at first glance
val categoryMap = wikiData
.map(x=>x.category)
.distinct
.zipWithIndex
.mapValues(x=>x.toDouble/1000)
.collectAsMap
val labeledData = wikiData.map(x=>LabeledData(
x.category, x.text, categoryMap.get(x.category).getOrElse(0.0))).toDF
it won't generate valid labels for ML algorithms.
First of all ML expects labels to be in (0.0, 1.0, ..., n.0) where n is number of classes. If your example pipeline where one of the classes get label 0.001 you'll get an error like this:
ERROR LogisticRegression: Classification labels should be in {0 to 0 Found 1 invalid labels.
The obvious solution is to avoid division when you generate mapping
.mapValues(x=>x.toDouble)
While it will work for LogisticRegression other ML algorithms will still fail. For example with RandomForestClassifier you'll get
RandomForestClassifier was given input with invalid label column label, without the number of classes specified. See StringIndexer.
What it interesting ML version of RandomForestClassifier, unlike its MLlib counterpart, doesn't provide a method to set a number of classes. Turns out it expects special attributes to be set on a DataFrame column. The simplest approach is to use StringIndexer mentioned in the error message:
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("label")
val pipeline = new Pipeline()
.setStages(Array(indexer, tokenizer, hashingTF, idf, lr))
val model = pipeline.fit(wikiData.toDF)

Resources