Picture how mapAccumR works - haskell

Can you explain how exactly mapAccumR works, the kind of problems it solves,and how it's different from foldr. I have a hard time picturing how it works.

This is a good question. I wish the documentation was a bit nicer around this. I recently had a use for them myself, so hopefully I can explain from the perspective of someone who also had some trouble understanding how they worked.
So, the type signature of mapAccumR is:
Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
Let's just assume the Traversable under question is a list because it's possibly a bit easier to understand that way, so specialising the types:
(a -> b -> (a, c)) -> a -> [b] -> (a, [c])
So, to explain this, mapAccumR is a function of three arguments (ignoring currying, as we do for easy explanation), and I'm going to annotate these arguments here:
mapAccumR :: (a -> b -> (a, c)) -> a -> [b] -> (a, [c])
mapAccumR :: mappingAndAccumulationFunction -> initialAccumulatorValue -> listToMapOver -> resultantAccumulatorAndMappedListPair
Cool, so that clears things a little bit, but it's still a bit confusing, right. So what the heck does it do?
Well, it does an accumulating map: so let's say in the first step, what it does is take the initialAccumulatorValue and the first b from the listToMapOver, and passes those to the mappingAndAccumulationFunction function, which will do something with them and return two things: 1. a new value of type a and 2. a mapped value for later collection into the mapped list (see the type of resultantAccumulatorAndMappedListPair). These two values are paired, hence the return type of the mappingAndAccumulationFunction function as (a, c).
In the second and subsequent steps, it takes this (a, c) pair from the last step, pulls the c out and remembers it by appending it to an internal list it's keeping track of until the end, and pulls the a out as the first argument to the next application of the mappingAndAccumulationFunction along with the next b value of the listToMapOver.
Once it runs out of b values from listToMapOver, it returns a pair which has the last value of a and a list whose contents are of type c.
So why the heck would you want this function? Example time!
annotateLeastFavourites items = snd (mapAccumR (\num item -> (num + 1, show num ++ ": " ++ item)) 1 items)
itemList = ["Geese","Monkeys","Chocolate","Chips"]
> annotateLeastFavourites itemList
["4: Geese","3: Monkeys","2: Chocolate","1: Chips"]
or, maybe this is a bit simpler to see what's going on:
> mapAccumR (\num item -> (num + 1, show num ++ ": " ++ item)) 1 ["Geese", "Monkeys", "Chocolate", "Chips"]
(5,["4: Geese","3: Monkeys","2: Chocolate","1: Chips"])
So we can see that it's a function that can give us a "cumulative value" along with our accumulating value anytime we need some information to pass along a map, for example, or if we want to build up a collection value (on the right) that also needs to have information passed along that changes with each step (the value on the left).
Maybe you want to get the max length of a list of items as you also annotate them with each item's length
> mapAccumR (\biggestSoFar item -> (max biggestSoFar (length item), (item, length item))) 0 ["Geese", "Monkeys", "Chocolate", "Chips"]
(9,[("Geese",5),("Monkeys",7),("Chocolate",9),("Chips",5)])
There are lots of possibilities here. Hopefully now it's clear why people say this is like a combination of map and foldr. If you happen to think geometrically as I do, I think of it as when you need to transform a collection of some kind, and you need to thread some changing thing through that collection as part of the transformation.
Hope this has helped give you an intuition and store the pattern in your mind for later when you recognise you might need it in the future :)
let (_, result) =
mapAccumR
(\cumulativeLength item ->
let newLength = cumulativeLength + length item
in (newLength, take cumulativeLength (repeat ' ') ++ item)
)
0
["Geese", "Monkeys", "Chocolate", "Chips", "Dust", "Box"]
in mapM_ putStrLn $ reverse result
Box
Dust
Chips
Chocolate
Monkeys
Geese
Sometimes, and depending on the shape of the computation you want, you'd want to use mapAccumL instead of mapAccumR, but you get the picture.
Also, note that it's defined for Traversable instances, not just lists, so it will work on all sorts of traversable containers and data structures such as Trees, Maps, Vectors, etc.

Here are some examples, generated using Debug.SimpleReflect.
Below, f is the same f you would use in a foldr, except the arguments have been flipped. Otherwise, there's no difference.
Instead g is similar to what you would use in a map, except g x y does not only depend on the current list element y, but also on the results of the former fold x.
> import Data.List
> import Debug.SimpleReflect
> mapAccumR (\x y -> (f x y, g x y)) a [] :: (Expr, [Expr])
(a,[])
> mapAccumR (\x y -> (f x y, g x y)) a [b] :: (Expr, [Expr])
(f a b,[g a b])
> mapAccumR (\x y -> (f x y, g x y)) a [b,c] :: (Expr, [Expr])
(f (f a c) b,[g (f a c) b,g a c])
> mapAccumR (\x y -> (f x y, g x y)) a [b,c,d] :: (Expr, [Expr])
(f (f (f a d) c) b,[g (f (f a d) c) b,g (f a d) c,g a d])
Here is a foldr with f having its arguments flipped, by comparison.
> foldr (\x y -> f y x) a [b,c,d]
f (f (f a d) c) b
(I have no idea about why mapAccumR chose the arguments of f in the flipped order compared to foldr.)

Related

How to avoid infinite loop in zipWith a self reference?

I'd like to create a list data structure that can zipWith that has a better behavior with self reference. This is for an esoteric language that will rely on self reference and laziness to be Turing complete using only values (no user functions). I've already created it, called Atlas but it has many built ins, I'd like to reduce that and be able to compile/interpret in Haskell.
The issue is that zipWith checks if either list is empty and returns empty. But in the case that this answer depends on the result of zipWith then it will loop infinitely. Essentially I'd like it to detect this case and have faith that the list won't be empty. Here is an example using DList
import Data.DList
import Data.List (uncons)
zipDL :: (a->b->c) -> DList a -> DList b -> DList c
zipDL f a b = fromList $ zipL f (toList a) (toList b)
zipL :: (a->b->c) -> [a] -> [b] -> [c]
zipL _ [] _ = []
zipL _ _ [] = []
zipL f ~(a:as) ~(b:bs) = f a b : zipL f as bs
a = fromList [5,6,7]
main=print $ dh where
d = zipDL (+) a $ snoc (fromList dt) 0
~(Just (dh,dt)) = uncons $ toList d
This code would sum the list 5,6,7 except for the issue. It can be fixed by removing zipL _ _ [] = [] because then it assumes that the result won't be empty and then it in fact turns out not to be empty. But this is a bad solution because we can't always assume that it is the second list that could have the self reference.
Another way of explaining it is if we talk about the sizes of these list.
The size of zip a b = min (size a) (size b)
So in this example: size d = min (size a) (size d-1+1)
But there in lies the problem, if the size of d is 0, then the size of d = 0, but if size of d is 1 the size is 1, however once the size of d is said to be greater than size of a, then the size would be a, which is a contradiction. But any size 0-a works which means it is undefined.
Essentially I want to detect this case and make the size of d = a.
So far the only thing I have figured out is to make all lists lists of Maybe, and terminate lists with a Nothing value. Then in the application of the zipWith binary function return Nothing if either value is Nothing. You can then take out both of the [] checks in zip, because you can think of all lists as being infinite. Finally to make the summation example work, instead of doing a snoc, do a map, and replace any Nothing value with the snoc value. This works because when checking the second list for Nothing, it can lazily return true, since no value of the second list can be nothing.
Here is that code:
import Data.Maybe
data L a = L (Maybe a) (L a)
nil :: L a
nil = L Nothing nil
fromL :: [a] -> L a
fromL [] = nil
fromL (x:xs) = L (Just x) (fromL xs)
binOpMaybe :: (a->b->c) -> Maybe a -> Maybe b -> Maybe c
binOpMaybe f Nothing _ = Nothing
binOpMaybe f _ Nothing = Nothing
binOpMaybe f (Just a) (Just b) = Just (f a b)
zip2W :: (a->b->c) -> L a -> L b -> L c
zip2W f ~(L a as) ~(L b bs) = L (binOpMaybe f a b) (zip2W f as bs)
unconsL :: L a -> (Maybe a, Maybe (L a))
unconsL ~(L a as) = (a, Just as)
mapOr :: a -> L a -> L a
mapOr v ~(L a as) = L (Just $ fromMaybe v a) $ mapOr v as
main=print $ h
where
a = fromL [4,5,6]
b = zip2W (+) a (mapOr 0 (fromJust t))
(h,t) = unconsL $ b
The downside to this approach is it needs this other operator to map with Just . fromMaybe initialvalue. This is a less intuitive operator than ++. And without it the language could be built entirely on ++ uncons and (:[]) which would be pretty neat.
The other thing I've figured out is in the current ruby implementation to throw an error when a value depends on itself, and catch it in the empty list detection. But this is vary hacky and not entirely sound, although it does work for cases like this. I don't think this can work in Haskell since I don't think you can detect self dependence?
Sorry for the long description and the very odd use case. I've spent tons of time thinking about this, but haven't solved it yet and can't explain it any more succinctly! Not expecting an answer but figured it is worth a shot, thanks for considering.
EDIT:
After seeing it framed as a greatest fixed point question, it seems like a poor question because there is no efficient general solution to such a problem. For example, suppose the code was b = zipWith (+) a (if length b < 1 then [1] else []).
For my purposes it could still be nice to handle some cases correctly - the example provided does have a solution. So I could reframe the question as: when can we find the greatest fixed point efficiently and what is that fixed point? But I believe there is no simple answer to such a question, and so it would be a poor basis for a programming language to rely on ad hoc rules.
Sounds like you want a greatest fixed point. I'm not sure I've seen this done before, but maybe it's possible to make a sensible type class for types that support those.
class GF a where gfix :: (a -> a) -> a
instance GF a => GF [a] where
gfix f = case (f (repeat undefined), f []) of
(_:_, _) -> b:bs where
b = gfix (\a' -> head (f (a':bs)))
bs = gfix (\as' -> tail (f (b:as')))
([], []) -> []
_ -> error "no fixed point greater than bottom exists"
-- use the usual least fixed point. this ain't quite right, but
-- it works for this example, and maybe it's Good Enough
instance GF Int where gfix f = let x = f x in x
Try it out in ghci:
> gfix (\xs -> zipWith (+) [5,6,7] (tail xs ++ [0])) :: [Int]
[18,13,7]
This implementation isn't particularly efficient; e.g. replacing [5,6,7] with [1..n] results in a runtime that's quadratic in n. Perhaps with some cleverness that can be improved, but it's not immediately obvious to me how that would go.
I have an answer for this specific case, not general.
appendRepeat :: a -> [a] -> [a]
appendRepeat v a = h : appendRepeat v t
where
~(h,t) =
if null a
then (v,[])
else (head a,tail a)
a = [4,5,6]
main=print $ head b
where
b = zipWith (+) a $ appendRepeat 0 (tail b)
appendRepeat adds a an infinite list of a repeated value to the end of a list. But the key thing about it is it doesn't check if list is empty or not when deciding that it is returning a non empty list where the tail is a recursive call. This way laziness never ends up in an infinite loop checking the zipWith _ [] case.
So this code works, and for the purposes of the original question, it can be used to convert the language to just using 2 simple functions (++ and :[]). But the interpreter would need to do some static analysis for appending a repeated value and replace it to using this special appendRepeat function (which can easily be done in Atlas). It seems hacky to only make this one implementation switcharoo, but that is all that is needed.

What is the connection between primitive recursion and catamorphisms?

Using the following catamorphism for natural numbers I can implement various arithmetic algorithms whithout having to deal with recursion:
cataNat :: b -> (b -> b) -> Natural -> b
cataNat zero succ = go
where
go n = if (n <= 0) then zero else succ (go (n - 1))
fib :: Natural -> Natural
fib = fst . cataNat (0, 1) (\(a, b) -> (b, a + b))
cataNat looks similar to primitive recursion to me. At least each application of it seems garuanteed to terminate, no matter which combination of zero and succ is provided. With each iteration the overall problem is decomposed by the smallest/simplest problem instance. So even if it is technically not primitive recursion it seems to be equally expressive. If this is true it would mean that a catamorphism is not enough to express general recursion. We would probably need a hylomorphism for that. Is my reasoning correct, that is, does the equivalence hold for any type of catamorphism, not just for natural numbers?
Primitive recursion corresponds directly to a paramorphism.
You're correct that a catamorphism has equivalent theoretical power to a paramorphism, but they can be different in important ways in operational terms. For an example, let's go to lists instead of Nats.
cata :: b -> (a -> b -> b) -> [a] -> b
cata = flip foldr -- I'm lazy, but this argument order makes a bit more sense for this example
para :: b -> (a -> [a] -> b -> b) -> [a] -> b
para z _ [] = z
para z f (x:xs) = f x xs (para z f xs)
-- Removes the first element from the list which is equal to the other argument
delete1 :: Eq a => a -> [a] -> [a]
delete1 x xs = cata (const []) (\el k found -> if not found && el == x then k True else el : k found) xs False
-- Removes the first element from the list which is equal to the other argument
delete2 :: Eq a => a -> [a] -> [a]
delete2 x xs = para [] (\el raw processed -> if el == x then raw else el : processed) xs
Look at how awkward delete1 is, compared to delete2. Not only do you have to contort your logic by making the result of cata a function, but there's a very real operational cost, too. You have to traverse everything in the list after finding a matching element, and re-create all the (:) constructors. That can have a noticeable cost in efficiency. In comparison, delete2, when it finds the target element, can just use the existing tail of the list for the remainder, without even looking at it. Of course, most uses of foldr (real world, not this example) don't produce a function and don't want access to the unprocessed tail of the list. For them, the catamorphism is going to be slightly more efficient simply because of passing around less data.
So in terms of theoretical power, they're equivalent. In operational terms, each has a use, though catamorphisms are a lot more common.
For some expansion of the idea in more general terms, see the recursion-schemes library. It uses a rather different-looking formulation of the idea so that it can abstract over data types with different shapes, instead of needing a different type for cata/para for each data type they can be applied to. But it really is just an alternate way of packing up the same ideas, and other kinds of morphisms are covered as well, including much more niche (or even possibly useless) ones.

Divide and conquer: Merge sort

I'm fairly new to Haskell and don't understand the following divide and conquer construct:
{- trivial solve split combine input/output-}
dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> ([b] -> b) -> a -> b
dc trivial solve split combine = x
where
x y = if trivial y then solve y
else (\_ z -> combine z) y (map x (split y))
Now I need to implement a merge-sort function based on this construct. I tried to implement some functions but I'm pretty sure that's not how it should work:
trivial :: (Ord a, Num a) => [a] -> Bool
trivial [] = True
trivial (x:[]) = True
trivial (x:x':xs) = if x<=x' then trivial (x':xs) else False
split :: [a] -> [[a]]
split (x:[]) = [[x]]
split (x:xs) = [x] : split xs
combine :: [[a]] -> [a]
combine [[]] = []
combine ([]:ys) = combine ys
combine ((x:xs):ys) = x : combine (xs:ys)
So how does the construct above work ? What does "x" and "y" stand for ? What should "trivial" and "solve" (and split/combine) do ?
So, the signature of dc can be read as "this function takes 4 arguments and returns a function from a to b". In the definition, this function is called x. x is defined in the where clause, as:
x y = if trivial y then solve y
else (\_ z -> combine z) y (map x (split y))
You could add a type signature for x:
x :: a -> b
The definition of x (which is the function that performs your actual divide and conquer computation) is somewhat obfuscated, but can be read as:
If x is a trivial case, just solve it
Otherwise, split it, divide-and-conquer it (with x), then combine the result.
Note: It could be written a bit more clearly as:
x y = if trivial y then solve y
else (combine . map x . split) y
This function does all the recursivity you need, so your functions don't need to care about that. Your functions should be:
trivial: True if the problem can be solved with solve in this case. For the merge sort, the trivial case is the list that contains only one item.
solve: solves the trivial case. For the merge sort, it's just the identity (since it's just a one item list).
split: split the big problem into smaller problems (which will be done many times, until they are trivial. For the merge sort, it's just about splitting the list in half.
combine: takes a list of stuff that were previously splitted, and combine them. For the merge sort, that's where the merging magic happens :)
Note: the merge sort algorithm can be a bit different from what I mentioned. For example, a sorted list can also be a trivial case.

Inverting a fold

Suppose for a minute that we think the following is a good idea:
data Fold x y = Fold {start :: y, step :: x -> y -> y}
fold :: Fold x y -> [x] -> y
Under this scheme, functions such as length or sum can be implemented by calling fold with the appropriate Fold object as argument.
Now, suppose you want to do clever optimisation tricks. In particular, suppose you want to write
unFold :: ([x] -> y) -> Fold x y
It should be relatively easy to rule a RULES pragma such that fold . unFold = id. But the interesting question is... can we actually implement unFold?
Obviously you can use RULES to apply arbitrary code transformations, whether or not they preserve the original meaning of the code. But can you really write an unFold implementation which actually does what its type signature suggests?
No, it's not possible. Proof: let
f :: [()] -> Bool
f[] = False
f[()] = False
f _ = True
First we must, for f' = unFold f, have start f' = False, because when folding over the empty list we directly get the start value. Then we must require step f' () False = False to achieve fold f' [()] = False. But when now evaluating fold f' [(),()], we would again only get a call step f' () False, which we had to define as False, leading to fold f' [(),()] ≡ False, whereas f[(),()] ≡ True. So there exists no unFold f that fulfills fold $ unFold f ≡ f.                                                                                                                                              □
You can, but you need to make a slight modification to Fold in order to pull it off.
All functions on lists can be expressed as a fold, but sometimes to accomplish this, extra bookkeeping is needed. Suppose we add an additional type parameter to your Fold type, which passes along this additional contextual information.
data Fold a c r = Fold { _start :: (c, r), _step :: a -> (c,r) -> (c,r) }
Now we can implement fold like so
fold :: Fold a c r -> [a] -> r
fold (Fold step start) = snd . foldr step start
Now what happens when we try to go the other way?
unFold :: ([a] -> r) -> Fold a c r
Where does the c come from? Functions are opaque values, so it's hard to know how to inspect a function and know which contextual information it relies on. So, let's cheat a little. We're going to have the "contextual information" be the entire list, so then when we get to the leftmost element, we can just apply the function to the original list, ignoring the prior cumulative results.
unFold :: ([a] -> r) -> Fold a [a] r
unFold f = Fold { _start = ([], f [])
, _step = \a (c, _r) -> let c' = a:c in (c', f c') }
Now, sadly, this does not necessarily compose with fold, because it requires that c must be [a]. Let's fix that by hiding c with existential quantification.
{-# LANGUAGE ExistentialQuantification #-}
data Fold a r = forall c. Fold
{ _start :: (c,r)
, _step :: a -> (c,r) -> (c,r) }
fold :: Fold a r -> [a] -> r
fold (Fold start step) = snd . foldr step start
unFold :: ([a] -> r) -> Fold a r
unFold f = Fold start step where
start = ([], f [])
step a (c, _r) = let c' = a:c in (c', f c')
Now, it should always be true that fold . unFold = id. And, given a relaxed notion of equality for the Fold data type, you could also say that unFold . fold = id. You can even provide a smart constructor that acts like the old Fold constructor:
makeFold :: r -> (a -> r -> r) -> Fold a r
makeFold start step = Fold start' step' where
start' = ((), start)
step' a ((), r) = ((), step a r)
tl;dr:
Conclusion 1: you can't
What you asked for originally isn't possible, at least not by any version of what you wanted I can come up with. (See below.)
If change your data type to allow me to store intermediate calculations, I think I'll be fine, but even then,
the function unFold would be rather inefficient, which seems to run counter to your clever optimisation tricks agenda!
Conclusion 2: I don't think it achieves what you want, even if you work around it by changing the types
Any optimisation of the list algorithm would be subject to the problem that you've calculated the step function using the original unoptimised function, and quite probably in a complicated way.
Since there's no equality on functions, optimising step to something efficient isn't possible. I think you need a human to do unFold, not a compiler.
Anyway, back to the original question:
Could fold . unFold = id ?
No. Suppose we have
isSingleton :: [a] -> Bool
isSingleton [x] = True
isSingleton _ = False
then if we had unFold :: ([x] -> y) -> Fold x y then if foldSingleton was the same as unFold isSingleton would need to have
foldSingleton = Fold {start = False , step = ???}
Where step takes an element of the list and updates the result.
Now isSingleton "a" == True, we need
step False = True
and because isSingleton "ab" == False, we need
step True = False
so step = not would do so far, but also isSingleton "abc" == False so we also need
step False = False
Since there are functions ([x] -> y) that cannot be represented by a value of type Fold x y, there cannot exist a function unFold :: ([x] -> y) -> Fold x y such that fold . unFold = id, because id is a total function.
Edit:
It turns out you're not convinced by this, because you only expected unFold to work on functions that had a representation as a fold, so maybe you meant unFold.fold = id.
Could unFold . fold = id ?
No.
Even if you just want unFold to work on functions ([x] -> y) that can be obtained using fold :: Fold x y -> ([x] -> y), I don't think it's possible. Let's address the question by assuming now we have defined
combine :: X -> Y -> Y
initial :: Y
folded :: [X] -> Y
folded = fold $ Fold initial combine
Recovering the value initial is trivial: initial = folded [].
Recovery of the original combine is not, because there's no way to go from a function that gives you some values of Y to one which combines arbitrary values of Y.
For an example, if we had X = Y = Int and I defined
combine x y | y < 0 = -10
| otherwise = y + 1
initial = 0
then since combine just adds one to y every time you use it on positive y, and the initial value is 0, folded is indistinguishable from length in terms of its output. Notice that since folded xs is never negative, it's also impossible to define a function unFold :: ([x] -> y) -> Fold x y that ever recovers our combine function. This boils down to the fact that fold is not injective; it carries different values of type Fold x y to the same value of type [x] -> y.
Thus I've proved two things: if unFold :: ([x] -> y) -> Fold x y then both fold.unFold /= id and now also unFold.fold /= id
I bet you're not convinced by this either, because you don't really care whether you got Fold 0 (\_ y -> y+1) or Fold 0 combine back from unFold folded, seeing as they have the same value when refolded! Let's narrow the goalposts one more time. Perhaps you want unFold to work whenever the function is obtainable via fold, and you're happy for it not to give you inconsistent answers as long as when you fold the result again, you get the same function. I can summarise that with this next question:
Could fold . unFold . fold = fold ?
i.e. Could you define unFold so that fold.unFold is the identity on the set of functions obtainable via fold?
I'm really convinced this isn't possible, because it's not a tractible problem to calculate the step function without retaining extra information about intermediate values on sublists.
Suppose we had
unFold f = Fold {start = f [], step = recoverstep f}
we need
recoverstep f x1 initial == f [x1]
so if there's an Eq instance for x (ring the alarm bells!), then recoverstep must have the same effect as
recoverstep f x1 y | y == initial = f [x1]
also we need
recoverstep f x2 (f [x1]) == f [x1,x2]
so if there's an Eq instance for x, then recoverstep must have the same effect as
recoverstep f x2 y | y == (f [x1]) = f [x1,x2]
but there's a massive problem here: the variable x1 is free in the right hand side of this equation.
This means that logically, we can't tell what value the step function should have on an x unless we already
know what values it has been used on. We would need to store the values of f [x1], f [x1,x2] etc in the Fold
data type to make it work, and this is the clincher as to why we can't define unFold. If you change the data type Fold
to allow us to store information about intermediate lists, I can see it would work, but as it stands it's impossible
to recover the context.
Similar to Dan's answer, but using a slightly different approach. Instead of pairing the accumulator with partial results which will be thrown away at the end, we add a "post-processing" function which will convert from the accumulator type to the final result.
The same "cheat" for unFold just does all the work in the post-processing step:
{-# LANGUAGE ExistentialQuantification #-}
data Fold a r = forall c. Fold
{ _start :: c
, _step :: a -> c -> c
, _result :: c -> r }
fold :: Fold a r -> [a] -> r
fold (Fold start step result) = result . foldr step start
unFold :: ([a] -> r) -> Fold a r
unFold f = Fold [] (:) f
makeFold :: r -> (a -> r -> r) -> Fold a r
makeFold start step = Fold start step id

Composing a chain of 2-argument functions

So I have a list of a functions of two arguments of the type [a -> a -> a]
I want to write a function which will take the list and compose them into a chain of functions which takes length+1 arguments composed on the left. For example if I have [f,g,h] all of types [a -> a -> a] I need to write a function which gives:
chain [f,g,h] = \a b c d -> f ( g ( h a b ) c ) d
Also if it helps, the functions are commutative in their arguments ( i.e. f x y = f y x for all x y ).
I can do this inside of a list comprehension given that I know the the number of functions in question, it would be almost exactly like the definition. It's the stretch from a fixed number of functions to a dynamic number that has me stumped.
This is what I have so far:
f xs = f' xs
where
f' [] = id
f' (x:xs) = \z -> x (f' xs) z
I think the logic is along the right path, it just doesn't type-check.
Thanks in advance!
The comment from n.m. is correct--this can't be done in any conventional way, because the result's type depends on the length of the input list. You need a much fancier type system to make that work. You could compromise in Haskell by using a list that encodes its length in the type, but that's painful and awkward.
Instead, since your arguments are all of the same type, you'd be much better served by creating a function that takes a list of values instead of multiple arguments. So the type you want is something like this: chain :: [a -> a -> a] -> [a] -> a
There are several ways to write such a function. Conceptually you want to start from the front of the argument list and the end of the function list, then apply the first function to the first argument to get something of type a -> a. From there, apply that function to the next argument, then apply the next function to the result, removing one element from each list and giving you a new function of type a -> a.
You'll need to handle the case where the list lengths don't match up correctly, as well. There's no way around that, other than the aforementioned type-encoded-lengths and the hassle associate with such.
I wonder, whether your "have a list of a functions" requirement is a real requirement or a workaround? I was faced with the same problem, but in my case set of functions was small and known at compile time. To be more precise, my task was to zip 4 lists with xor. And all I wanted is a compact notation to compose 3 binary functions. What I used is a small helper:
-- Binary Function Chain
bfc :: (c -> d) -> (a -> b -> c) -> a -> b -> d
bfc f g = \a b -> f (g a b)
For example:
ghci> ((+) `bfc` (*)) 5 3 2 -- (5 * 3) + 2
17
ghci> ((+) `bfc` (*) `bfc` (-)) 5 3 2 1 -- ((5 - 3) * 2) + 1
5
ghci> zipWith3 ((+) `bfc` (+)) [1,2] [3,4] [5,6]
[9,12]
ghci> getZipList $ (xor `bfc` xor `bfc` xor) <$> ZipList [1,2] <*> ZipList [3,4] <*> ZipList [5,6] <*> ZipList [7,8]
[0,8]
That doesn't answers the original question as it is, but hope still can be helpful since it covers pretty much what question subject line is about.

Resources