How to implement the Y combinator in Rust? [duplicate] - rust

I've just started Rust tutorial and ended with such code using recursion
extern crate rand;
use std::io;
use rand::Rng;
use std::cmp::Ordering;
use std::str::FromStr;
use std::fmt::{Display, Debug};
fn try_guess<T: Ord>(guess: T, actual: T) -> bool {
match guess.cmp(&actual) {
Ordering::Less => {
println!("Too small");
false
}
Ordering::Greater => {
println!("Too big");
false
}
Ordering::Equal => {
println!("You win!");
true
}
}
}
fn guess_loop<T: Ord + FromStr + Display + Copy>(actual: T)
where <T as FromStr>::Err: Debug
{
println!("PLease input your guess.");
let mut guess = String::new();
io::stdin()
.read_line(&mut guess)
.expect("Failed to read line");
let guess_int: T = guess.trim()
.parse()
.expect("Should enter integer number");
println!("You guessed {} !", guess_int);
if !try_guess(guess_int, actual) {
guess_loop(actual)
}
}
fn main() {
println!("Guess the number!!!");
let secret_number = rand::thread_rng().gen_range(1, 51);
guess_loop(secret_number);
}
I was hoping to factor-out the recursion from the guess_loop function and introduced a fix point operator:
fn guess_loop<T: Ord + FromStr + Display + Copy>(actual: T, recur: fn(T) -> ()) -> ()
where <T as FromStr>::Err: Debug
{
println!("PLease input your guess.");
let mut guess = String::new();
io::stdin()
.read_line(&mut guess)
.expect("Failed to read line");
let guess_int: T = guess.trim()
.parse()
.expect("Should enter integer number");
println!("You guessed {} !", guess_int);
if !try_guess(guess_int, actual) {
recur(actual)
}
}
fn fix<T, R>(func: fn(T, fn(T) -> R) -> R) -> fn(T) -> R {
fn fixed(val: T) -> R {
func(val, fixed)
}
fixed
}
fn main() {
println!("Guess the number!!!");
let secret_number = rand::thread_rng().gen_range(1, 51);
fix(guess_loop)(secret_number);
}
but this led to numerous errors, such as
error[E0401]: can't use type parameters from outer function; try using a local type parameter instead
--> src/main.rs:49:19
|
49 | fn fixed(val: T) -> R {
| ^ use of type variable from outer function
error[E0401]: can't use type parameters from outer function; try using a local type parameter instead
--> src/main.rs:49:25
|
49 | fn fixed(val: T) -> R {
| ^ use of type variable from outer function
error[E0434]: can't capture dynamic environment in a fn item; use the || { ... } closure form instead
--> src/main.rs:50:9
|
50 | func(val, fixed)
| ^^^^
My next attempt was changing guess_loop's definition to
fn guess_loop<T: Ord + FromStr + Display + Copy, F>(actual: T, recur: F) -> ()
where <T as FromStr>::Err: Debug,
F: Fn(T) -> ()
{ ... }
and redefine fix as
fn fix<T, R, F>(func: fn(T, F) -> R) -> F
where F: Fn(T) -> R
{
let fixed = |val: T| func(val, fix(func));
fixed
}
this led to
error[E0308]: mismatched types
--> src/main.rs:53:5
|
53 | fixed
| ^^^^^ expected type parameter, found closure
|
= note: expected type `F`
= note: found type `[closure#src/main.rs:52:17: 52:46 func:_]`
error: the type of this value must be known in this context
--> src/main.rs:61:5
|
61 | fix(guess_loop)(secret_number);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
How can I write a similar fix function?

Firstly, variable names don't exist until after they're initialised. You can't have fixed refer to itself like that.
Secondly, you can't return closures by-value from a function, period. Generic parameters are chosen by the caller, and the caller has no idea what the type of a closure inside the function is going to be.
I'm not claiming that what follows is the best way of doing this, but it was the simplest I was able to come up with that type-checks.
fn guess_loop<T>(actual: T, recur: &Fn(T)) -> ()
where T: Ord + FromStr + Display + Copy,
<T as FromStr>::Err: Debug
{
// ...
}
fn fix<T, R, F>(func: F) -> Box<Fn(T) -> R>
where T: 'static,
R: 'static,
F: Fn(T, &Fn(T) -> R) -> R + 'static
{
use std::cell::RefCell;
use std::rc::Rc;
let fixed = Rc::new(RefCell::new(None));
let fixed_fn = {
let fixed = fixed.clone();
move |val: T| -> R {
let fixed_ref = fixed.borrow();
let fixed_ref: &Box<_> = fixed_ref.as_ref().unwrap();
func(val, &**fixed_ref)
}
};
*fixed.borrow_mut() = Some(Box::new(fixed_fn));
Box::new(move |val: T| -> R {
let fixed_ref = fixed.borrow();
let fixed_ref: &Box<_> = fixed_ref.as_ref().unwrap();
fixed_ref(val)
})
}
In order for fixed_fn to refer to itself, we have to create something for it to read from before it exists. Unfortunately, this means having a cycle, and Rust hates cycles. So, we do this by constructing a reference-counted RefCell<Option<_>> that starts with None, and which will be mutated later to contain the fixed-point closure.
Secondly, we can't use this handle as a callable, so we have to explicitly pull a pointer to the closure out so that we can pass it to func.
Third, the compiler doesn't seem to be able to infer the type of fixed correctly. I was hoping it would be able to work out that it is Rc<RefCell<Option<{closure}>>>, but it refused to do so. As a result, we have to resort to storing a Box<Fn(T) -> R>, since we can't name the type of the closure explicitly.
Finally, we have to construct a new closure that takes a second handle to fixed, unpacks it, and calls it. Again, we can't use fixed as a callable directly. We also can't re-use the closure inside fixed, because to do that we'd have to put that inside its own Rc and at that point, things are starting to get crazy.
... more crazy.
Finally, we have to return this second closure in a Box because, as I said before, we can't return closures by value because we can't name their types in the signature.
*deep breath*
If someone has a simpler solution, I'd love to see it. :P

This is an answer to my own question about implementing the Y combinator which is a subset of this question. In pure lambda expression, a version of the Y combinator looks like
λf.(λw.w w)(λw.f (w w))
The solution in Rosetta Code is too complicated and used Box to allocate memory in the heap. I want to simplify this.
First, let's implement the type Mu<T> as a trait instead.
trait Mu<T> {
fn unroll(&self, &Mu<T>) -> T;
}
Note that we need this trait to be object safe, which means we cannot ask for Self in any of its definition so the second parameter is typed &Mu<T> and it is a trait object.
Now we can write a generic trait implementation:
impl<T, F: Fn(&Mu<T>) -> T> Mu<T> for F {
fn unroll(&self, o: &Mu<T>) -> T {
self(o)
}
}
With this, we can now write the y combinator as the following:
fn y<T, F: Fn(T) -> T>(f: &F) -> T {
(&|w: &Mu<T>| w.unroll(w))(&|w: &Mu<T>| f(w.unroll(w)))
}
The above compiles in the Rust playground without enabling any features and using only the stable channel so this is a pretty good answer to my question.
However, the above would not work in practice because Rust is call-by-value but the code above is the call-by-name Y combinator.
The call-by-value solution
To work with the stable channel without requiring any features, we cannot return closures (which requires impl Trait). Instead, I came up with making another Mu2 type that takes two type parameters:
trait Mu2<T, R> {
fn unroll(&self, &Mu2<T, R>, t: T) -> R;
}
As above, let's implement this new trait.
impl<T, R, F> Mu2<T, R> for F
where
F: Fn(&Mu2<T, R>, T) -> R,
{
fn unroll(&self, o: &Mu2<T, R>, t: T) -> R {
self(o, t)
}
}
The new Y combinator:
fn y<T, R, F>(f: &F, t: T) -> R
where
F: Fn(&Fn(T) -> R, T) -> R,
{
(&|w: &Mu2<T, R>, t| w.unroll(w, t))((&|w: &Mu2<T, R>, t| f(&|t| w.unroll(w, t), t)), t)
}
Now it is time to test our new facility.
fn main() {
let fac = &|f: &Fn(i32) -> i32, i| if i > 0 { i * f(i - 1) } else { 1 };
println!("{}", y(fac, 10))
}
Results in:
3628800
All done!
You can see that the y function has a slightly different signature than the questioner's fix, but it shouldn't matter.
The direct recurring version
The same technology to avoid returning a closure can be used for the normal direct recurring version as well:
fn fix<T, R, F>(f: &F, t: T) -> R
where
F: Fn(&Fn(T) -> R, T) -> R,
{
f(&|t| fix(f, t), t)
}
fn fib(i: i32) -> i32 {
let fn_ = &|f:&Fn(i32) -> i32, x| if x < 2 { x } else { f(x-1) + f(x-2) };
fix(fn_, i)
}
Basically, whenever you need to return a closure from a function, you can add the closure's parameter to the function, and change the return type to the closure's return type. Later on when you need a real closure, just create the closure by partial evaluating that function.
Further discussions
Compare to other languages, in Rust there is a big difference: the function given to find fix point must not have any internal states. In Rust this is a requirement that the F type parameter of y must be Fn, not FnMut or FnOnce.
For example, we cannot implement a fix_mut that would be used like
fn fib1(i: u32) -> u32 {
let mut i0 = 1;
let mut i1 = 1;
let fn_ = &mut |f:&Fn(u32) -> u32, x|
match x {
0 => i0,
1 => i1,
_ => {
let i2 = i0;
i0 = i1;
i1 = i1 + i2;
f(x)
}
};
fix_mut(fn_, i)
}
without unsafe code whilst this version, if it works, performs much better (O(N)) than the version given above (O(2^N)).
This is because you can only have one &mut of one object at a single time. But the idea of Y combinator, or even the fix point function, requires capturing/passing the function at the same time when calling it, that's two references and you can't just mark any of them immutable without marking another so.
On the other hand, I was wonder if we could do something that other languages usually not able to but Rust seems to be able. I was thinking restricting the first argument type of F from Fn to FnOnce (as y function will provide the implementation, change to FnMut does not make sense, we know it will not have states, but change to FnOnce means we want it to be used only once), Rust would not allow at the moment as we cannot pass unsized object by value.
So basically, this implementation is the most flexible solution we could think of.
By the way, the work around of the immutable restriction is to use pseudo-mutation:
fn fib(i: u32) -> u32 {
let fn_ = &|f:&Fn((u32,u32,u32)) -> u32, (x,i,j)|
match x {
0 => i,
1 => j,
_ => {
f((x-1,j,i+j))
}
};
fix(&fn_, (i,1,1))
}

Starting at where you left off:
fn fix<T, R, F>(func: fn(T, F) -> R) -> F
where F: Fn(T) -> R
{
|val: T| func(val, fix(func))
}
The returned object has an unnameable closure type. Using a generic type won’t help here, since the type of the closure is decided by the callee, not the caller. Here’s where impl traits come in handy:
fn fix<T, R, F>(func: fn(T, F) -> R) -> impl Fn(T) -> R
where F: Fn(T) -> R
{
|val: T| func(val, fix(func))
}
We can’t pass fix(func) to func because it expects a nameable type for F. We’ll have to settle for a trait object instead:
fn fix<T, R>(func: fn(T, &Fn(T) -> R) -> R) -> impl Fn(T) -> R {
|val: T| func(val, &fix(func))
}
Now it’s time to fight the lifetime checker. The compiler complains:
only named lifetimes are allowed in `impl Trait`, but `` was found in the type `…`
This is a somewhat cryptic message. Since impl traits are always 'static by default, this is a roundabout way of saying: “the closure does not live long enough for 'static”. To get the real error message, we append + 'static to the impl Fn(T) -> R and recompile:
closure may outlive the current function, but it borrows `func`, which is owned by the current function
So that was the real problem. It is borrowing func. We don’t need to borrow func because fn is Copy, so we can duplicate it as much as we want. Let’s prepend the closure with move and get rid of the + 'static from earlier:
fn fix<T, R>(func: fn(T, &Fn(T) -> R) -> R) -> impl Fn(T) -> R {
move |val: T| func(val, &fix(func))
}
And voila, it works! Well, almost … you’ll have to edit guess_loop and change fn(T) -> () to &Fn(T) -> (). I’m actually quite amazed that this solution doesn’t require any allocations.
If you can’t use impl traits, you can instead write:
fn fix<T, R>(func: fn(T, &Fn(T) -> R) -> R) -> Box<Fn(T) -> R>
where T: 'static,
R: 'static
{
Box::new(move |val: T| func(val, fix(func).as_ref()))
}
which is unfortunately not allocation-free.
Also, we can generalize the result a bit to allow arbitrary closures and lifetimes:
fn fix<'a, T, R, F>(func: F) -> impl 'a + Fn(T) -> R
where F: 'a + Fn(T, &Fn(T) -> R) -> R + Copy
{
move |val: T| func(val, &fix(func))
}
In the process of figuring out a solution for your problem, I ended up writing a simpler version of fix, which actually ended up guide me towards a solution to your fix function:
type Lazy<'a, T> = Box<FnBox() -> T + 'a>;
// fix: (Lazy<T> -> T) -> T
fn fix<'a, T, F>(f: F) -> T
where F: Fn(Lazy<'a, T>) -> T + Copy + 'a
{
f(Box::new(move || fix(f)))
}
Here’s a demonstration of how this fix function could be used to calculate the factorial:
fn factorial(n: u64) -> u64 {
// f: Lazy<u64 -> u64> -> u64 -> u64
fn f(fac: Lazy<'static, Box<FnBox(u64) -> u64>>) -> Box<FnBox(u64) -> u64> {
Box::new(move |n| {
if n == 0 {
1
} else {
n * fac()(n - 1)
}
})
}
fix(f)(n)
}

This can be done at zero runtime cost if you're willing to use unstable features (i.e. a nightly compiler) and willing to... obfuscate your code slightly.
First, we need to turn the result of fix into a named struct. This struct needs to implement Fn, so we'll implement it manually (this is an unstable feature).
#![feature(fn_traits)]
#![feature(unboxed_closures)]
extern crate rand;
use rand::Rng;
use std::cmp::Ordering;
fn try_guess<T: Ord>(guess: T, actual: T) -> bool {
match guess.cmp(&actual) {
Ordering::Less => {
println!("Too small");
false
}
Ordering::Greater => {
println!("Too big");
false
}
Ordering::Equal => {
println!("You win!");
true
}
}
}
struct Fix<F>
where F: Fn(i32, &Fix<F>)
{
func: F,
}
impl<F> FnOnce<(i32,)> for Fix<F>
where F: Fn(i32, &Fix<F>)
{
type Output = ();
extern "rust-call" fn call_once(self, args: (i32,)) -> Self::Output {
self.call(args)
}
}
impl<F> FnMut<(i32,)> for Fix<F>
where F: Fn(i32, &Fix<F>)
{
extern "rust-call" fn call_mut(&mut self, args: (i32,)) -> Self::Output {
self.call(args)
}
}
impl<F> Fn<(i32,)> for Fix<F>
where F: Fn(i32, &Fix<F>)
{
extern "rust-call" fn call(&self, (val,): (i32,)) -> Self::Output {
(self.func)(val, self);
}
}
fn fix<F>(func: F) -> Fix<F>
where F: Fn(i32, &Fix<F>)
{
Fix { func: func }
}
fn guess_loop<F>(actual: i32, recur: &F)
where F: Fn(i32)
{
let guess_int = rand::thread_rng().gen_range(1, 51);
if guess_int != actual {
recur(actual)
}
}
fn main() {
let secret_number = rand::thread_rng().gen_range(1, 51);
fix(guess_loop)(secret_number);
}
However, we're not done yet. This fails to compile with the following error:
error[E0281]: type mismatch: the type `fn(i32, &_) {guess_loop::<_>}` implements the trait `for<'r> std::ops::Fn<(i32, &'r _)>`, but the trait `for<'r> std::ops::Fn<(i32, &'r Fix<fn(i32, &_) {guess_loop::<_>}>)>` is required (cyclic type of infinite size)
--> src/main.rs:77:5
|
77 | fix(guess_loop)(secret_number);
| ^^^
|
= note: required by `fix`
Note: In case you're not aware, in Rust, each function has its own, zero-sized type. If a function is generic, then each instantiation of that function will have its own type as well. For example, the type of guess_loop::<X> will be reported by the compiler as fn(i32, &X) {guess_loop::<X>} (as you can see in the error message above, except with underscores where the concrete type hasn't been resolved yet). That type can be coerced to a function pointer type implicitly in some contexts or explicitly with a cast (as).
The problem is that, in the expression fix(guess_loop), the compiler needs to instantiate guess_loop, which is a generic function, and it looks like the compiler isn't able to figure out the proper type to instantiate it with. In fact, the type we would like to set for type parameter F references the type of guess_loop. If we were to write it out in the style reported by the compiler, the type would look like fn(i32, &Fix<X>) {guess_loop::<Fix<&X>>}, where X is replaced by the type itself (you can see now where the "cyclic type of infinite size" comes from).
We can solve this by replacing the guess_loop function by a non-generic struct (we'll call it GuessLoop) that implements Fn by referring to itself. (You can't do this with a normal function because you can't name a function's type.)
struct GuessLoop;
impl<'a> FnOnce<(i32, &'a Fix<GuessLoop>)> for GuessLoop {
type Output = ();
extern "rust-call" fn call_once(self, args: (i32, &Fix<GuessLoop>)) -> Self::Output {
self.call(args)
}
}
impl<'a> FnMut<(i32, &'a Fix<GuessLoop>)> for GuessLoop {
extern "rust-call" fn call_mut(&mut self, args: (i32, &Fix<GuessLoop>)) -> Self::Output {
self.call(args)
}
}
impl<'a> Fn<(i32, &'a Fix<GuessLoop>)> for GuessLoop {
extern "rust-call" fn call(&self, (actual, recur): (i32, &Fix<GuessLoop>)) -> Self::Output {
let guess_int = rand::thread_rng().gen_range(1, 51);
if !try_guess(guess_int, actual) {
recur(actual)
}
}
}
fn main() {
let secret_number = rand::thread_rng().gen_range(1, 51);
fix(GuessLoop)(secret_number);
}
Notice that GuessLoop's implementation of Fn is no longer generic on the type of the recur parameter. What if we tried to make the implementation of Fn generic (while still leaving the struct itself non-generic, to avoid cyclic types)?
struct GuessLoop;
impl<'a, F> FnOnce<(i32, &'a F)> for GuessLoop
where F: Fn(i32),
{
type Output = ();
extern "rust-call" fn call_once(self, args: (i32, &'a F)) -> Self::Output {
self.call(args)
}
}
impl<'a, F> FnMut<(i32, &'a F)> for GuessLoop
where F: Fn(i32),
{
extern "rust-call" fn call_mut(&mut self, args: (i32, &'a F)) -> Self::Output {
self.call(args)
}
}
impl<'a, F> Fn<(i32, &'a F)> for GuessLoop
where F: Fn(i32),
{
extern "rust-call" fn call(&self, (actual, recur): (i32, &'a F)) -> Self::Output {
let guess_int = rand::thread_rng().gen_range(1, 51);
if !try_guess(guess_int, actual) {
recur(actual)
}
}
}
Unfortunately, this fails to compile with the following error:
error[E0275]: overflow evaluating the requirement `<Fix<GuessLoop> as std::ops::FnOnce<(i32,)>>::Output == ()`
--> src/main.rs:99:5
|
99 | fix(GuessLoop)(secret_number);
| ^^^
|
= note: required because of the requirements on the impl of `for<'r> std::ops::Fn<(i32, &'r Fix<GuessLoop>)>` for `GuessLoop`
= note: required by `fix`
Essentially, the compiler is unable to verify that Fix<GuessLoop> implements Fn(i32), because in order to do that, it needs to verify that GuessLoop implements Fn(i32, &Fix<GuessLoop>), but that is only true if Fix<GuessLoop> implements Fn(i32) (because that impl is conditional), which is only true if GuessLoop implements Fn(i32, &Fix<GuessLoop>) (because that impl is conditional too), which... you get the idea. In order words, the two implementations of Fn here are dependent on each other, and the compiler is unable to resolve that.

Related

What does this line of code in Rust mean?

I was going through rust-by-practice and came across a problem. I have no idea what a particular line of code does. This is the exact piece of code for context:
fn example1() {
// `T: Trait` is the commonly used way.
// `T: Fn(u32) -> u32` specifies that we can only pass a closure to `T`.
struct Cacher<T: Fn(u32) -> u32> {
calculation: T,
value: Option<u32>,
}
impl<T: Fn(u32) -> u32> Cacher<T> {
fn new(calculation: T) -> Cacher<T> {
Cacher {
calculation,
value: None,
}
}
fn value(&mut self, arg: u32) -> u32 {
match self.value {
Some(v) => v,
None => {
let v = (self.calculation)(arg); // This exact line of code
self.value = Some(v);
v
},
}
}
}
let mut cacher = Cacher::new(|x| x+1);
assert_eq!(cacher.value(10), __);
assert_eq!(cacher.value(15), __);
}
The calculation field of Cacher is a closure (type T where T: Fn(u32) -> u32), and that line is calling it with arg as an argument, then assigning the resulting u32 to v. Without the parentheses, let v = self.calculation(arg) will look for a method named calculation, which doesn't exist. The parenthesis force a different order of operations which produces a different result.

How can we store a chain of heterogeneous functions in Rust?

I'm working on some code where I'm interested in a lazy-evaluated function chain. In other words, it stores all the operations you want, and only evaluates them all together.
This is very easy when all the functions in the chain take the same type and return the same type. However, I'm stuck on how to make this work when the chain of functions returns a different type each time. This easy case can be seen in the following code:
struct FuncChain<T> {
funcs: Vec<fn(T) -> T>
}
impl<T> FuncChain<T> {
fn call(&self, input: T) -> T {
self.funcs.iter().fold(input, |prev, func| func(prev))
}
}
fn main(){
let fc = FuncChain {
funcs: vec![
|x| x + 1,
|x| x + 2,
|x| x * 2,
|x| x - 2,
]
};
println!("{}", fc.call(1));
}
(Playground)
So in this case we go i32 -> i32 -> i32 -> i32 -> i32.
What I want to do is a more general case where we go A -> B -> C -> D -> E, meaning that the funcs vector contains: fn(A) -> B, fn(B) -> C, fn(C) -> D, and fn(D) -> E. But how can this type definition be assigned to a struct? I can't create a vector with heterogeneous types, and even if I could, what would the type signature of the struct be?
I could make a recursive type definition perhaps, where the FuncChain holds a pointer to the first function object, and also the next object in the chain :
struct FuncChain<S, T, U> {
func: fn(S) -> T,
next: FuncChain<T, U, ?>
}
impl<S, T, U> FuncChain<S, T, U> {
fn call(&self, input: T) -> T {
self.funcs.iter().fold(input, |prev, func| func(prev))
}
}
fn main(){
let fc = FuncChain {
funcs: vec![
|x| x.toString(),
|x| u8::fromStr(x),
|x| x.toString(),
|x| i32::fromStr(x),
]
};
println!("{}", fc.call(1));
}
However of course this won't work, because I can't know the output type of next.
How can this be done?
You question is similar to Iterator, and so can be solved the same solution: a trait indicating a "callable".
The trait lets you "break" the infinite recursion of your current struct-based system, by having the struct just denote it as "whatever that does".
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=f0d6bcc9eb8e070c1d9b6469f6a5e148
struct Chain<U, V, F> {
prev: F,
f: fn(U) -> V,
}
trait FuncChain<T, U> {
fn call(&self, _: T) -> U;
fn chain<V>(self, next: fn(U) -> V) -> Chain<U, V, Self>
where
Self: Sized,
{
Chain {
prev: self,
f: next,
}
}
}
impl<T, U> FuncChain<T, U> for fn(T) -> U {
fn call(&self, t: T) -> U {
self(t)
}
}
impl<T, U, V, F> FuncChain<T, V> for Chain<U, V, F>
where
F: FuncChain<T, U>,
{
fn call(&self, t: T) -> V {
(self.f)(self.prev.call(t))
}
}
fn main() {
let c = ((|x| x + 1) as fn(i32) -> i32)
.chain(|x| x * 2)
.chain(|x| x - 2);
println!("{}", c.call(5));
}
A better Rustacean can probably design a simpler way to achieve this.
If you're fine with using nightly, there's probably a way to use Fn instead of needing a custom trait.
Hell, fundamentally it's just . so you can probably manage with just a generic function and a closure, I'll have to check.

How do I implement an `apply_n_times` function?

How do I implement an apply_n_times function which gets a function f: T -> T and a number n and the result will be a function which applies f ntimes?
E.g. apply_n_times(f, 0) equals |x| x and apply_n_times(f, 3) equals |x| f(f(f(x))).
There is no deeper sense in this function, I just want to implement it for learning reasons.
My current code:
fn apply_n_times<T>(f: Fn(T) -> T, n: i32) -> dyn Fn(T) -> T {
if n < 0 {
panic!("Cannot apply less than 0 times!");
}
if n == 1 {
|x: T| x
} else {
|x| f(apply_n_times(f, n - 1)(x))
}
}
fn times_two(n: i32) -> i32 {
return n * 2;
}
fn main() {
println!("{}", apply_n_times(times_two, 0)(3));
println!("{}", apply_n_times(times_two, 1)(3));
println!("{}", apply_n_times(times_two, 3)(3));
}
I'm at chapter 13 of the Rust book, but I searched forward a bit. I probably have to return a Box, but I'm not really sure. I tried it and I failed.
I also wanted to change the signature to this, but this only results in problems:
fn apply_n_times<F, T>(f: F, n: i32) -> F
where
F: Fn(T) -> T,
Unfortunately, the compiler errors do not help me; they say what's wrong at a low level, but I was running in a circle.
fn apply_n_times<T>(f: impl Fn(T) -> T, n: usize) -> impl Fn(T) -> T {
move |arg| (0..n).fold(arg, |a, _| f(a))
}
Using a usize avoids the need for the negative check. Consider using FnMut instead of Fn as it's more flexible for users of the function.
See also:
Can you create a function that takes another function and a parameter and returns a lazy stream of nested function calls?
How to use the Fn traits (closures) in Rust function signatures?
Returning a closure from a function

Create method on iterator that returns iterator in Rust

I want to define a lazy square() method without unnecessary runtime overhead (no dyn keyword) that can be called on any Iterable<Item = u8> and returns another Iterable<Item = u8>, like so:
fn main() {
vec![1, 2, 3, 4, 5]
.iter()
.filter(|x| x > 1)
.squared()
.filter(|x| x < 20);
}
I know how to define squared() as a standalone function:
fn squared<I: Iterator<Item = u8>>(iter: I) -> impl Iterator<Item = u8> {
iter.map(|x| x * x)
}
To define that method on Iterator<Item = u8> though, I have to first define a trait.
Here's where I struggle — traits cannot use the impl keyword in return values.
I'm looking for something like the following, which does not work:
trait Squarable<I: Iterator<Item = u8>> {
fn squared(self) -> I;
}
impl<I, J> Squarable<I> for J
where
I: Iterator<Item = u8>,
J: Iterator<Item = u8>,
{
fn squared(self) -> I {
self.map(|x| x * x)
}
}
I had many failed attempts at solving the problem, including changing the return type of squared to Map<u8, fn(u8) -> u8> and tinkering with IntoIterables, but nothing worked so far. Any help would be greatly appreciated!
First of all, your output iterator should probably be an associated type and not a trait parameter, since that type is an output of the trait (it's not something that the caller can control).
trait Squarable {
type Output: Iterator<Item = u8>;
fn squared(self) -> I;
}
That being said, there are a few different possible approaches to solve this problem, each with different advantages and disadvantages.
Using trait objects
The first is to use trait objects, e.g. dyn Iterator<Item = u8>, to erase the type at runtime. This comes at a slight runtime cost, but is definitely the simplest solution in stable Rust today:
trait Squarable {
fn squared(self) -> Box<dyn Iterator<Item = u8>>;
}
impl<I: 'static + Iterator<Item = u8>> Squarable for I {
fn squared(self) -> Box<dyn Iterator<Item = u8>> {
Box::new(self.map(|x| x * x))
}
}
Using a custom iterator type
In stable rust, this is definitely the cleanest from the point of view of the user of the trait, however it takes a bit more code to implement because you need to write your own iterator type. However, for a simple map iterator this is pretty straight forward:
trait Squarable: Sized {
fn squared(self) -> SquaredIter<Self>;
}
impl<I: Iterator<Item = u8>> Squarable for I {
fn squared(self) -> SquaredIter<I> {
SquaredIter(self)
}
}
struct SquaredIter<I>(I);
impl<I: Iterator<Item = u8>> Iterator for SquaredIter<I> {
type Item = u8;
fn next(&mut self) -> Option<u8> {
self.0.next().map(|x| x * x)
}
}
Using the explicit Map type
<I as Iterator>::map(f) has a type std::iter::Map<I, F>, so if the type F of the mapping function is known, we can use that type explicitly, at no runtime cost. This does expose the specific type as part of the function's return type though, which makes it harder to replace in the future without breaking dependent code. In most cases the function will also not be known; in this case we can use F = fn(u8) -> u8 however since the function does not keep any internal state (but often that won't work).
trait Squarable: Sized {
fn squared(self) -> std::iter::Map<Self, fn(u8) -> u8>;
}
impl<I: Iterator<Item = u8>> Squarable for I {
fn squared(self) -> std::iter::Map<Self, fn(u8) -> u8> {
self.map(|x| x * x)
}
}
Using an associated type
An alterative to the above is to give the trait an assoicated type. This still has the restriction that the function type must be known, but it's a bit more general since the Map<...> type is tied to the implementation instead of the trait itself.
trait Squarable {
type Output: Iterator<Item = u8>;
fn squared(self) -> Self::Output;
}
impl<I: Iterator<Item = u8>> Squarable for I {
type Output = std::iter::Map<Self, fn(u8) -> u8>;
fn squared(self) -> Self::Output {
self.map(|x| x * x)
}
}
Using impl in associated type
This is similar to the "Using an associated type" above, but you can hide the actual type entirely, apart from the fact that it is an iterator. I personally think this is the preferrable solution, but unfortunately it is still unstable (it depends on the type_alias_impl_trait feature) so you can only use it in nightly Rust.
#![feature(type_alias_impl_trait)]
trait Squarable {
type Output: Iterator<Item = u8>;
fn squared(self) -> Self::Output;
}
impl<I: Iterator<Item = u8>> Squarable for I {
type Output = impl Iterator<Item = u8>;
fn squared(self) -> Self::Output {
self.map(|x| x * x)
}
}

Rust function which takes function with arg a function

I want to write a generic function count_calls which calls a function f which takes a function pointer (lambda) where count_calls counts how often function f called the given lambda function.
I struggle with the approach (Playground).
fn count_calls<S, F>(s: S, f: F) -> u32
where
S: Clone,
F: Sized + FnMut(Fn() -> S) -> (),
{
let mut counter: u32 = 0;
f(|| {
counter += 1;
s.clone()
});
counter
}
#[cfg(test)]
mod stackoverflow {
use super::*;
fn f(p: fn() -> i32) {
p();
p();
}
#[test]
fn test() {
let counts = count_calls(3, f);
assert_eq!(counts, 2);
}
}
Here I get the error:
error[E0277]: the size for values of type `(dyn std::ops::Fn() -> S + 'static)` cannot be known at compilation time
--> src/lib.rs:1:1
|
1 | / fn count_calls<S, F>(s: S, f: F) -> u32
2 | | where
3 | | S: Clone,
4 | | F: Sized + FnMut(Fn() -> S) -> (),
... |
12 | | counter
13 | | }
| |_^ doesn't have a size known at compile-time
|
= help: within `((dyn std::ops::Fn() -> S + 'static),)`, the trait `std::marker::Sized` is not implemented for `(dyn std::ops::Fn() -> S + 'static)`
= note: to learn more, visit <https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait>
= note: required because it appears within the type `((dyn std::ops::Fn() -> S + 'static),)`
= note: required by `std::ops::FnMut`
Does someone know how to fix this?
[Edit]
I think using Box<Fn()->S> might be a solution. But I would prefer a stack only solution, if possible.
The error "the size for values of type (dyn std::ops::Fn() -> S + 'static) cannot be known at compilation time" is caused by your trait bound for F:
F: Sized + FnMut(Fn() -> S) -> ()
This is equivalent to F: Sized + FnMut(dyn Fn() -> S). This means that the closure F would take a trait object (dyn Fn() -> S) by value. But trait objects are unsized and cannot be passed by value (yet).
One solution would be to pass the trait object by reference or in a Box. The answer by rodrigo explains and discusses these solutions.
Can we avoid trait objects and dynamic dispatch?
Not properly, I think.
Non solutions
One idea would be to add another type parameter to count_calls:
fn count_calls<S, F, G>(s: S, f: F) -> u32
where
S: Clone,
F: Sized + FnMut(G),
G: Fn() -> S,
However, this doesn't work:
error[E0308]: mismatched types
--> src/lib.rs:9:7
|
9 | f(|| {
| _______^
10 | | counter += 1;
11 | | s.clone()
12 | | });
| |_____^ expected type parameter, found closure
|
= note: expected type `G`
found type `[closure#src/lib.rs:9:7: 12:6 counter:_, s:_]`
The problem here is that type arguments of count_calls are chosen by the caller of count_calls. But we actually want G to always be the type of our own closure. So that doesn't work.
What we want is a generic closure (where we can choose it's type parameters). Something similar is possible, but restricted to lifetime parameters. It's called HRTBs and looks like F: for<'a> Fn(&'a u32). But it doesn't help here because we need a type parameter and for<T> doesn't exist (yet?).
Sub-optimal, nightly solution
One solution would be to not use a closure, but a type with a known name which implements FnMut. Sadly, you can't implement the Fn* traits for your own type on stable yet. On nightly, this works.
struct CallCounter<S> {
counter: u32,
s: S,
}
impl<S: Clone> FnOnce<()> for CallCounter<S> {
type Output = S;
extern "rust-call" fn call_once(self, _: ()) -> Self::Output {
// No point in incrementing the counter here
self.s
}
}
impl<S: Clone> FnMut<()> for CallCounter<S> {
extern "rust-call" fn call_mut(&mut self, _: ()) -> Self::Output {
self.counter += 1;
self.s.clone()
}
}
fn count_calls<S, F>(s: S, mut f: F) -> u32
where
S: Clone,
F: Sized + FnMut(&mut CallCounter<S>), // <----
{
let mut counter = CallCounter {
counter: 0,
s,
};
f(&mut counter); // <-------
counter.counter
}
Unfortunately, now you have this strange type in your public interface (which should be implementation detail).
Apart from that, I can't think of any real solution (only other super verbose solutions with plenty of disadvantages). The developments in the type system corner (in particular in regards to GATs and HKTs) could solve this properly in the future. However, I think there are still a few different features lacking; in particular, I don't think that GATs as proposed would already solve this.
So if this is a real life problem which needs to be solved right now, I would:
step back and rethink the problem in a bigger scope to maybe avoid this Rust limitation, or
just use dynamic dispatch.
This is the simplest code that I managed to get working (playground):
fn count_calls<S, F>(s: S, mut f: F) -> u32
where
S: Clone,
F: FnMut(&mut dyn FnMut() -> S) -> (),
{
let mut counter: u32 = 0;
f(&mut || {
counter += 1;
s.clone()
});
counter
}
#[cfg(test)]
mod stackoverflow {
use super::*;
fn f(p: &mut dyn FnMut() -> i32) {
p();
p();
}
#[test]
fn test() {
let counts = count_calls(3, f);
assert_eq!(counts, 2);
}
}
The key change is that the function argument for F is changed from Fn() -> S into &mut dyn FnMut() -> S. You need a reference because you are using dynamic dispatching. Also you need FnMut because you are capturing counter and changing it inside, and a Fn will not allow it.
Note that you cannot use Box<FnMut() -> S. It will not allow capturing a reference to counter because boxed functions must be 'static.
If you find that changing your Fn to FnMut is undesirable (because you are changing your public API) you could go back to F: FnMut(&mut dyn Fn() -> S) -> () by defining counter as a Cell<u32>:
fn count_calls<S, F>(s: S, mut f: F) -> u32
where
S: Clone,
F: FnMut(&dyn Fn() -> S) -> (),
{
let counter: Cell<u32> = Cell::new(0);
f(&|| {
counter.set(counter.get() + 1);
s.clone()
});
counter.into_inner()
}

Resources