Trapezoidal wave in Python - python-3.x

How do I generate a trapezoidal wave in Python?
I looked into the modules such as SciPy and NumPy, but in vain. Is there a module such as the scipy.signal.gaussian which returns an array of values representing the Gaussian function wave?
I generated this using the trapezoidal kernel of Astropy,
Trapezoid1DKernel(30,slope=1.0)
. I want to implement this in Python without using Astropy.

While the width and the slope are sufficient to define a triangular signal, you would need a third parameter for a trapezoidal signal: the amplitude.
Using those three parameters, you can easily adjust the scipy.signal.sawtooth function to give you a trapeziodal shape by truncating and offsetting the triangular shaped function.
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
def trapzoid_signal(t, width=2., slope=1., amp=1., offs=0):
a = slope*width*signal.sawtooth(2*np.pi*t/width, width=0.5)/4.
a[a>amp/2.] = amp/2.
a[a<-amp/2.] = -amp/2.
return a + amp/2. + offs
t = np.linspace(0, 6, 501)
plt.plot(t,trapzoid_signal(t, width=2, slope=2, amp=1.), label="width=2, slope=2, amp=1")
plt.plot(t,trapzoid_signal(t, width=4, slope=1, amp=0.6), label="width=4, slope=1, amp=0.6")
plt.legend( loc=(0.25,1.015))
plt.show()
Note that you may also like to define a phase, depeding on the use case.
In order to define a single pulse, you might want to modify the function a bit and supply an array which ranges over [0,width].
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
def trapzoid_signal(t, width=2., slope=1., amp=1., offs=0):
a = slope*width*signal.sawtooth(2*np.pi*t/width, width=0.5)/4.
a += slope*width/4.
a[a>amp] = amp
return a + offs
for w,s,a in zip([2,5], [2,1], [1,0.6]):
t = np.linspace(0, w, 501)
l = "width={}, slope={}, amp={}".format(w,s,a)
plt.plot(t,trapzoid_signal(t, width=w, slope=s, amp=a), label=l)
plt.legend( loc="upper right")
plt.show()

From the SciPy website it looks like this isn't included (they currently have sawtooth and square, but not trapezoid). As a generalised version of the C example the following will do what you want,
import numpy as np
import matplotlib.pyplot as plt
def trapezoidalWave(xin, width=1., slope=1.):
x = xin%(4*width)
if (x <= width):
# Ascending line
return x*slope;
elif (x <= 2.*width):
# Top horizontal line
return width*slope
elif (x <= 3.*width):
# Descending line
return 3.*width*slope - x*slope
elif (x <= 4*width):
# Bottom horizontal line
return 0.
x = np.linspace(0.,20,1000)
for i in x:
plt.plot(i, trapezoidalWave(i), 'k.')
plt.plot(i, trapezoidalWave(i, 1.5, 2.), 'r.')
plt.show()
which looks like,
This can be done more elegantly with Heaviside functions which allow you to use NumPy arrays,
import numpy as np
import matplotlib.pyplot as plt
def H(x):
return 0.5 * (np.sign(x) + 1)
def trapWave(xin, width=1., slope=1.):
x = xin%(4*width)
y = ((H(x)-H(x-width))*x*slope +
(H(x-width)-H(x-2.*width))*width*slope +
(H(x-2.*width)-H(x-3.*width))*(3.*width*slope - x*slope))
return y
x = np.linspace(0.,20,1000)
plt.plot(x, trapWave(x))
plt.plot(x, trapWave(x, 1.5, 2.))
plt.show()
For this example, the Heaviside version is about 20 times faster!

The below example shows how to do that to get points and show scope.
Equation based on reply: Equation for trapezoidal wave equation
import math
import numpy as np
import matplotlib.pyplot as plt
def get_wave_point(x, a, m, l, c):
# Equation from: https://stackoverflow.com/questions/11041498/equation-for-trapezoidal-wave-equation
# a/pi(arcsin(sin((pi/m)x+l))+arccos(cos((pi/m)x+l)))-a/2+c
# a is the amplitude
# m is the period
# l is the horizontal transition
# c is the vertical transition
point = a/math.pi*(math.asin(math.sin((math.pi/m)*x+l))+math.acos(math.cos((math.pi/m)*x+l)))-a/2+c
return point
print('Testing wave')
x = np.linspace(0., 10, 1000)
listofpoints = []
for i in x:
plt.plot(i, get_wave_point(i, 5, 2, 50, 20), 'k.')
listofpoints.append(get_wave_point(i, 5, 2, 50, 20))
print('List of points : {} '.format(listofpoints))
plt.show()

The whole credit goes to #ImportanceOfBeingErnest . I am just revising some edits to his code which just made my day.
from scipy import signal
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
def trapzoid_signal(t, width=2., slope=1., amp=1., offs=0):
a = slope*width*signal.sawtooth(2*np.pi*t/width, width=0.5)/4.
a += slope*width/4.
a[a>amp] = amp
return a + offs
for w,s,a in zip([32],[1],[0.0322]):
t = np.linspace(0, w, 34)
plt.plot(t,trapzoid_signal(t, width=w, slope=s, amp=a))
plt.show()
The result:

I'll throw a very late hat into this ring, namely, a function using only numpy that produces a single (symmetric) trapezoid at a desired location, with all the usual parameters. Also posted here
import numpy as np
def trapezoid(x, center=0, slope=1, width=1, height=1, offset=0):
"""
For given array x, returns a (symmetric) trapezoid with plateau at y=h (or -h if
slope is negative), centered at center value of "x".
Note: Negative widths and heights just converted to 0
Parameters
----------
x : array_like
array of x values at which the trapezoid should be evaluated
center : float
x coordinate of the center of the (symmetric) trapezoid
slope : float
slope of the sides of the trapezoid
width : float
width of the plateau of the trapezoid
height : float
(positive) vertical distance between the base and plateau of the trapezoid
offset : array_like
vertical shift (either single value or the same shape as x) to add to y before returning
Returns
-------
y : array_like
y value(s) of trapezoid with above parameters, evaluated at x
"""
# ---------- input checking ----------
if width < 0: width = 0
if height < 0: height = 0
x = np.asarray(x)
slope_negative = slope < 0
slope = np.abs(slope) # Do all calculations with positive slope, invert at end if necessary
# ---------- Calculation ----------
y = np.zeros_like(x)
mask_left = x - center < -width/2.0
mask_right = x - center > width/2.0
y[mask_left] = slope*(x[mask_left] - center + width/2.0)
y[mask_right] = -slope*(x[mask_right] - center - width/2.0)
y += height # Shift plateau up to y=h
y[y < 0] = 0 # cut off below zero (so that trapezoid flattens off at "offset")
if slope_negative: y = -y # invert non-plateau
return y + offset
Which outputs something like
import matplotlib.pyplot as plt
plt.style.use("seaborn-colorblind")
x = np.linspace(-5,5,1000)
for i in range(1,4):
plt.plot(x,trapezoid(x, center=0, slope=1, width=i, height=i, offset = 0), label=f"width = height = {i}\nslope=1")
plt.plot(x,trapezoid(x, center=0, slope=-1, width=2.5, height=1, offset = 0), label=f"width = height = 1.5,\nslope=-1")
plt.ylim((-2.5,3.5))
plt.legend(frameon=False, loc='lower center', ncol=2)
Example output:

Related

matplotlib draw a contour line on a colorbar plot

I used below code to generate the colorbar plot of an image:
plt.imshow(distance)
cb = plt.colorbar()
plt.savefig(generate_filename("test_images.png"))
cb.remove()
The image looks likes this:
I want to draw a single contour line on this image where the signed distance value is equal to 0. I checked the doc of pyplot.contour but it needs a X and Y vector that represents the coordinates and a Z that represents heights. Is there a method to generate X, Y, and Z? Or is there a better function to achieve this? Thanks!
If you leave out X and Y, by default, plt.contour uses the array indices (in this case the range 0-1023 in both x and y).
To only draw a contour line at a given level, you can use levels=[0]. The colors= parameter can fix one or more colors. Optionally, you can draw a line on the colorbar to indicate the value of the level.
import matplotlib.pyplot as plt
import numpy as np
from scipy import ndimage # to smooth a test image
# create a test image with similar properties as the given one
np.random.seed(20221230)
distance = np.pad(np.random.randn(1001, 1001), (11, 11), constant_values=-0.02)
distance = ndimage.filters.gaussian_filter(distance, 100)
distance -= distance.min()
distance = distance / distance.max() * 0.78 - 0.73
plt.imshow(distance)
cbar = plt.colorbar()
level = 0
color = 'red'
plt.contour(distance, levels=[level], colors=color)
cbar.ax.axhline(level, color=color) # show the level on the colorbar
plt.show()
Reference: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
You can accomplish this by setting the [levels] parameter in contour([X, Y,] Z, [levels], **kwargs).
You can draw contour lines at the specified levels by giving an array that is in increasing order.
import matplotlib.pyplot as plt
import numpy as np
x = y = np.arange(-3.0, 3.0, 0.02)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z3 = np.exp(-(X + 1) ** 2 - (Y + 1) ** 2)
Z = (Z1 - Z2 - Z3) * 2
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='gaussian',
origin='lower', extent=[-4, 4, -4, 4],
vmax=abs(Z).max(), vmin=-abs(Z).max())
plt.colorbar(im)
CS = ax.contour(X, Y, Z, levels=[0.9], colors='black')
ax.clabel(CS, fmt='%1.1f', fontsize=12)
plt.show()
Result (levels=[0.9]):

My cmap won't separate around 0, what exactly is wrong?

I'm trying to plot out a contour plot with a colour scheme that has one colour for positive values and one colour for negative values. I tried using the answer in Colorplot that distinguishes between positive and negative values but to no avail. I've attached a snippet of code below, with this code the cmap doesn't separate Red and Blue at 0 but at -40. What exactly is wrong?
import numpy as np
from matplotlib.colors import BoundaryNorm
from matplotlib.ticker import MaxNLocator
Vr=1438.7228 #some constants
Va=626.8932
dr=3.11
da=1.55
def func(x,y):
repulsive = Vr*np.log( ((y+x)**2 + dr**2)/((y-x)**2 + dr**2) )
attractive = Va*np.log( ((y+x)**2 + da**2)/((y-x)**2 + da**2) )
return (1.0/(4.0*x*y))*(repulsive-attractive)
x = np.linspace(1e-4,10,100)
y = np.linspace(1e-4,10,100)
X, Y = np.meshgrid(x, y)
Z = func(X,Y)
levels = MaxNLocator(nbins=15).tick_values(Z.min(), Z.max())
cmap = plt.get_cmap('RdBu')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
sc = plt.contourf(X, Y, Z, norm=norm, cmap=cmap)
plt.colorbar(sc)
plt.show()

Find coordinate on curve

I have plotted curve created by a list with several values. How to find out the x-coordinate that correspond with y-coordinate 0.04400918? This value is not exactly included in the list that describes the curve. Thank you very much.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 3d graph
from mpl_toolkits.mplot3d import proj3d # 3d graph
import matplotlib.pylab as pl
fig=pl.figure()
ax = Axes3D(fig)
x=[0.02554897, 0.02587839, 0.02623991, 0.02663096, 0.02704882, 0.02749103, 0.02795535, 0.02844018, 0.02894404, 0.02946527, 0.03000235]
y=[0.04739086, 0.0460989, 0.04481555, 0.04354088, 0.04227474, 0.04101689, 0.03976702, 0.03852497, 0.03729052, 0.0360633, 0.03484293]
z=[1.05764017e-18, 1.57788964e-18, 2.00281370e-18, 2.40500994e-18, 2.80239565e-18, 3.19420769e-18, 3.58001701e-18, 3.96024361e-18, 4.33484911e-18, 4.70364652e-18, 5.06672528e-18]
y_point=0.04400918
ax.plot3D(x,y,z)
plt.show()
Here is a specific resolution for your problem.
Some works have already been done for solving line-plane equation. This topic explains how to solve it. Even better, this snippet implements a solution.
For now, we only need to adapt it to our problem.
The first step is to find all the time the line is crossing the plan. To do that, we will iterate over the y dataset and collect all consecutive values when y_point is between them:
lines = []
for i in range(len(y) - 1):
if y[i] >= y_point and y_point >= y[i+1]:
lines.append([[x[i], y[i], z[i]], [x[i+1], y[i+1], z[i+1]]])
Then, for all of these lines, we will solve the intersection equation with the plane. We will use the function provided in sources above.
Finally, we will plot the results
Full code:
# Modules
import numpy as np
import matplotlib.pyplot as plt
# Data
x = [0.02554897, 0.02587839, 0.02623991, 0.02663096, 0.02704882, 0.02749103, 0.02795535, 0.02844018, 0.02894404, 0.02946527, 0.03000235]
y = [0.04739086, 0.0460989, 0.04481555, 0.04354088, 0.04227474, 0.04101689, 0.03976702, 0.03852497, 0.03729052, 0.0360633, 0.03484293]
z = [1.05764017e-18, 1.57788964e-18, 2.00281370e-18, 2.40500994e-18, 2.80239565e-18, 3.19420769e-18, 3.58001701e-18, 3.96024361e-18, 4.33484911e-18, 4.70364652e-18, 5.06672528e-18]
y_point = 0.04400918
# Source: https://rosettacode.org/wiki/Find_the_intersection_of_a_line_with_a_plane#Python
# Resolve intersection
def LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint, epsilon=1e-6):
ndotu = planeNormal.dot(rayDirection)
if abs(ndotu) < epsilon:
raise RuntimeError("no intersection or line is within plane")
w = rayPoint - planePoint
si = -planeNormal.dot(w) / ndotu
Psi = w + si * rayDirection + planePoint
return Psi
# For all line, apply the solving process
def solveAllPoints(lines, y_point):
collision_points = []
for line in lines:
# Define plane
planeNormal = np.array([0, 1, 0]) # Plane normal (e.g. y vector)
planePoint = np.array([0, y_point, 0]) # Any point on the plane
# Define ray
rayDirection = line[1] - line[0] # Line direction
rayPoint = line[0] # Any point of the line
# Append point
collision_points.append(LinePlaneCollision(planeNormal, planePoint, rayDirection, rayPoint))
return collision_points
# Find all consecutive Y points crossing the plane.
# This function is only working for the given problem (intersection of the line
# with 1 plan defined by a normal vector = [0,1,0])
def getCrossingLines(y_point, x, y, z):
lines = []
for i in range(len(y) - 1):
if y[i] >= y_point and y_point >= y[i+1]:
lines.append([[x[i], y[i], z[i]], [x[i+1], y[i+1], z[i+1]]])
return np.array(lines)
# Get coordinates for drawing our plane
# Related topic: https://stackoverflow.com/questions/53115276/matplotlib-how-to-draw-a-vertical-plane-in-3d-figure
def getXYZPlane(x, y, z):
xs = np.linspace(min(x), max(x), 100)
zs = np.linspace(min(z), max(z), 100)
X, Z = np.meshgrid(xs, zs)
Y = np.array([y_point for _ in X])
return X, Y, Z
# Create plot
plt3d = plt.figure().gca(projection='3d')
ax = plt.gca()
# Draw data line
ax.plot3D(x,y,z)
# Plot plan
X, Y, Z = getXYZPlane(x, y, z)
ax.plot_surface(X, Y, Z)
# Draw crossing points (lines-planes)
lines = getCrossingLines(y_point, x, y , z)
for pt in solveAllPoints(lines, y_point):
ax.scatter(pt[0], pt[1], pt[2], color='green')
plt.show()
Output

Polar plot in Matplotlib by mapping into Cartesian coordinate

I have a variable (P) which is a function of angle (theta):
In this equation the K is a constant, theta_p is equal to zero and I is the modified Bessel function of the first kind (order 0) which is defined as:
Now, I want to plot the P versus theta for different values of constant K. First I calculated the parameter I and then plug it into the first equation to calculate P for different angles theta. I mapped it into a Cartesian coordinate by putting :
x = P*cos(theta)
y = P*sin(theta)
Here is my python implementation using matplotlib and scipy when the constant k=2.0:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import quad
def integrand(x, a, k):
return a*np.exp(k*np.cos(x))
theta = (np.arange(0, 362, 2))
theta_p = 0.0
X = []
Y = []
for i in range(len(theta)):
a = (1 / np.pi)
k = 2.0
Bessel = quad(integrand, 0, np.pi, args=(a, k))
I = list(Bessel)[0]
P = (1 / (np.pi * I)) * np.exp(k * np.cos(2 * (theta[i]*np.pi/180. - theta_p)))
x = P*np.cos(theta[i]*np.pi/180.)
y = P*np.sin(theta[i]*np.pi/180.)
X.append(x)
Y.append(y)
plt.plot(X,Y, linestyle='-', linewidth=3, color='red')
axes = plt.gca()
plt.show()
I should get a set of graphs like the below figure for different K values:
(Note that the distributions were plotted on a circle of unit 1 to ease visualization)
However it seems like the graphs produced by the above code are not similar to the above figure.
Any idea what is the issue with the above implementation?
Thanks in advance for your help.
Here is how it looks like (for k=2):
The reference for these formulas are the equation 5 and 6 that you could find here
You had a mistake in your formula.
Your formula gives the delta of your function above a unit circle. So in your function to get the plot you want, simply add 1 to it.
Here is what you want, with some tidied up python. ...note you can do the whole calculation of the 'P' values as a numpy vector line, you don't need to loop over the indicies. ...also you can just do a polar plot directly in matplotlib - you don't need to transform it into cartesian.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import quad
theta = np.arange(0, 2*np.pi+0.1, 2*np.pi/100)
def integrand(x, a, k):
return a*np.exp(k*np.cos(x))
for k in np.arange(0, 5, 0.5):
a = (1 / np.pi)
Bessel = quad(integrand, 0, np.pi, args=(a, k))
I = Bessel[0]
P = 1 + (1/(np.pi * I)) * np.exp(k * np.cos(2 * theta))
plt.polar(theta, P)
plt.show()

Draw curves with triple colors and width by using matplotlib and LineCollection [duplicate]

The figure above is a great artwork showing the wind speed, wind direction and temperature simultaneously. detailedly:
The X axes represent the date
The Y axes shows the wind direction(Southern, western, etc)
The variant widths of the line were stand for the wind speed through timeseries
The variant colors of the line were stand for the atmospheric temperature
This simple figure visualized 3 different attribute without redundancy.
So, I really want to reproduce similar plot in matplotlib.
My attempt now
## Reference 1 http://stackoverflow.com/questions/19390895/matplotlib-plot-with-variable-line-width
## Reference 2 http://stackoverflow.com/questions/17240694/python-how-to-plot-one-line-in-different-colors
def plot_colourline(x,y,c):
c = plt.cm.jet((c-np.min(c))/(np.max(c)-np.min(c)))
lwidths=1+x[:-1]
ax = plt.gca()
for i in np.arange(len(x)-1):
ax.plot([x[i],x[i+1]], [y[i],y[i+1]], c=c[i],linewidth = lwidths[i])# = lwidths[i])
return
x=np.linspace(0,4*math.pi,100)
y=np.cos(x)
lwidths=1+x[:-1]
fig = plt.figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
plot_colourline(x,y,prop)
ax.set_xlim(0,4*math.pi)
ax.set_ylim(-1.1,1.1)
Does someone has a more interested way to achieve this? Any advice would be appreciate!
Using as inspiration another question.
One option would be to use fill_between. But perhaps not in the way it was intended. Instead of using it to create your line, use it to mask everything that is not the line. Under it you can have a pcolormesh or contourf (for example) to map color any way you want.
Look, for instance, at this example:
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
def windline(x,y,deviation,color):
y1 = y-deviation/2
y2 = y+deviation/2
tol = (y2.max()-y1.min())*0.05
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100), np.linspace(y1.min()-tol, y2.max()+tol, 100))
Z = X.copy()
for i in range(Z.shape[0]):
Z[i,:] = c
#plt.pcolormesh(X, Y, Z)
plt.contourf(X, Y, Z, cmap='seismic')
plt.fill_between(x, y2, y2=np.ones(x.shape)*(y2.max()+tol), color='w')
plt.fill_between(x, np.ones(x.shape) * (y1.min() - tol), y2=y1, color='w')
plt.xlim(x.min(), x.max())
plt.ylim(y1.min()-tol, y2.max()+tol)
plt.show()
x = np.arange(100)
yo = np.random.randint(20, 60, 21)
y = interp1d(np.arange(0, 101, 5), yo, kind='cubic')(x)
dv = np.random.randint(2, 10, 21)
d = interp1d(np.arange(0, 101, 5), dv, kind='cubic')(x)
co = np.random.randint(20, 60, 21)
c = interp1d(np.arange(0, 101, 5), co, kind='cubic')(x)
windline(x, y, d, c)
, which results in this:
The function windline accepts as arguments numpy arrays with x, y , a deviation (like a thickness value per x value), and color array for color mapping. I think it can be greatly improved by messing around with other details but the principle, although not perfect, should be solid.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
x = np.linspace(0,4*np.pi,10000) # x data
y = np.cos(x) # y data
r = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: 1-x/(2*np.pi), 0]) # red
g = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: x/(2*np.pi), lambda x: -x/(2*np.pi)+2]) # green
b = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [0, lambda x: x/(2*np.pi)-1]) # blue
a = np.ones(10000) # alpha
w = x # width
fig, ax = plt.subplots(2)
ax[0].plot(x, r, color='r')
ax[0].plot(x, g, color='g')
ax[0].plot(x, b, color='b')
# mysterious parts
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# mysterious parts
rgba = list(zip(r,g,b,a))
lc = LineCollection(segments, linewidths=w, colors=rgba)
ax[1].add_collection(lc)
ax[1].set_xlim(0,4*np.pi)
ax[1].set_ylim(-1.1,1.1)
fig.show()
I notice this is what I suffered.

Resources