Haskell - exit a program with a specified error code - haskell

In Haskell, is there a way to exit a program with a specified error code? The resources I've been reading typically point to the error function for exiting a program with an error, but it seems to always terminate the program with an error code of 1.
[martin#localhost Haskell]$ cat error.hs
main = do
error "My English language error message"
[martin#localhost Haskell]$ ghc error.hs
[1 of 1] Compiling Main ( error.hs, error.o )
Linking error ...
[martin#localhost Haskell]$ ./error
error: My English language error message
[martin#localhost Haskell]$ echo $?
1

Use exitWith from System.Exit:
main = exitWith (ExitFailure 2)
I would add some helpers for convenience:
exitWithErrorMessage :: String -> ExitCode -> IO a
exitWithErrorMessage str e = hPutStrLn stderr str >> exitWith e
exitResourceMissing :: IO a
exitResourceMissing = exitWithErrorMessage "Resource missing" (ExitFailure 2)

An alternative that allows an error message only is die
import System.Exit
tests = ... -- some value from the program
testsResult = ... -- Bool value overall status
main :: IO ()
main = do
if testsResult then
print "Tests passed"
else
die (show tests)
The accepted answer allows setting the exit error code though, so it's closer to the exact phrasing of the question.

Related

Is it possible to assert an error case in HUnit?

If I have a function which results in an error for a certain input, is it possible to write a test verifying the error occurs for that input?
I do not find this "assert error" functionality available in HUnit. Is it available in HUnit or perhaps in some other test package?
You can catch an error and assert if it doesn't happen using standard exception handling:
errored <- catch (somethingThatErrors >> pure False) handler
if errored then
assertFailure "Did not catch expected error"
else
pure ()
where
handler :: ErrorCall -> IO Bool
handler _ = pure True

No sound with Haskell OpenAl

I am currently attempting to play audio files in Haskell using OpenAl. In order to do so, I am trying to get the example code at the ALUT git repository (https://github.com/haskell-openal/ALUT/blob/master/examples/Basic/PlayFile.hs) to work. However, it refuses to produce any sound. What am I missing here?
{-
PlayFile.hs (adapted from playfile.c in freealut)
Copyright (c) Sven Panne 2005-2016
This file is part of the ALUT package & distributed under a BSD-style license.
See the file LICENSE.
-}
import Control.Monad ( when, unless )
import Data.List ( intersperse )
import Sound.ALUT
import System.Exit ( exitFailure )
import System.IO ( hPutStrLn, stderr )
-- This program loads and plays a variety of files.
playFile :: FilePath -> IO ()
playFile fileName = do
-- Create an AL buffer from the given sound file.
buf <- createBuffer (File fileName)
-- Generate a single source, attach the buffer to it and start playing.
source <- genObjectName
buffer source $= Just buf
play [source]
-- Normally nothing should go wrong above, but one never knows...
errs <- get alErrors
unless (null errs) $ do
hPutStrLn stderr (concat (intersperse "," [ d | ALError _ d <- errs ]))
exitFailure
-- Check every 0.1 seconds if the sound is still playing.
let waitWhilePlaying = do
sleep 0.1
state <- get (sourceState source)
when (state == Playing) $
waitWhilePlaying
waitWhilePlaying
main :: IO ()
main = do
-- Initialise ALUT and eat any ALUT-specific commandline flags.
withProgNameAndArgs runALUT $ \progName args -> do
-- Check for correct usage.
unless (length args == 1) $ do
hPutStrLn stderr ("usage: " ++ progName ++ " <fileName>")
exitFailure
-- If everything is OK, play the sound file and exit when finished.
playFile (head args)
Unfortunately, while I don't get any errors, I also can\t hear any sound. Pavucontrol also does not seem to detect anything (no extra streams appear under the Playback tab).
Their HelloWorld example on the same git repository also gave neither errors nor sound.
I also tried the OpenALInfo function on the same git repository (https://github.com/haskell-openal/ALUT/blob/master/examples/Basic/OpenALInfo.hs), which further proves that I'm actually connecting to OpenAL, and gives some information about the versions which may or may not be useful:
ALC version: 1.1
ALC extensions:
ALC_ENUMERATE_ALL_EXT, ALC_ENUMERATION_EXT, ALC_EXT_CAPTURE,
ALC_EXT_DEDICATED, ALC_EXT_disconnect, ALC_EXT_EFX,
ALC_EXT_thread_local_context, ALC_SOFTX_device_clock,
ALC_SOFT_HRTF, ALC_SOFT_loopback, ALC_SOFT_pause_device
AL version: 1.1 ALSOFT 1.17.2
AL renderer: OpenAL Soft
AL vendor: OpenAL Community
AL extensions:
AL_EXT_ALAW, AL_EXT_BFORMAT, AL_EXT_DOUBLE,
AL_EXT_EXPONENT_DISTANCE, AL_EXT_FLOAT32, AL_EXT_IMA4,
AL_EXT_LINEAR_DISTANCE, AL_EXT_MCFORMATS, AL_EXT_MULAW,
AL_EXT_MULAW_BFORMAT, AL_EXT_MULAW_MCFORMATS, AL_EXT_OFFSET,
AL_EXT_source_distance_model, AL_LOKI_quadriphonic,
AL_SOFT_block_alignment, AL_SOFT_buffer_samples,
AL_SOFT_buffer_sub_data, AL_SOFT_deferred_updates,
AL_SOFT_direct_channels, AL_SOFT_loop_points, AL_SOFT_MSADPCM,
AL_SOFT_source_latency, AL_SOFT_source_length
Well, it turns out I posted here a bit too quickly. There was no problem with my code, but rather with my OpenAl settings. By adding
drivers=pulse,alsa
to /etc/openal/alsoft.conf OpenAl works. This is described in https://wiki.archlinux.org/index.php/PulseAudio#OpenAL.

Silencing GHC API output (stdout)

I'm using the GHC API to parse a module. If the module contains syntax errors the GHC API writes them to stdout. This interferes with my program, which has another way to report errors. Example session:
$ prog ../stack/src/Stack/Package.hs
../stack/src/Stack/Package.hs:669:0:
error: missing binary operator before token "("
#if MIN_VERSION_Cabal(1, 22, 0)
^
../stack/src/Stack/Package.hs:783:0:
error: missing binary operator before token "("
#if MIN_VERSION_Cabal(1, 22, 0)
^
../stack/src/Stack/Package.hs
error: 1:1 argon: phase `C pre-processor' failed (exitcode = 1)
Only the last one should be outputted. How can I make sure the GHC API does not output anything? I'd like to avoid libraries like silently which solve the problem by redirecting stdout to a temporary file.
I already tried to use GHC.defaultErrorHandler, but while I can catch the exception, GHC API still writes to stdout. Relevant code:
-- | Parse a module with specific instructions for the C pre-processor.
parseModuleWithCpp :: CppOptions
-> FilePath
-> IO (Either (Span, String) LModule)
parseModuleWithCpp cppOptions file =
GHC.defaultErrorHandler GHC.defaultFatalMessager (GHC.FlushOut $ return ()) $
GHC.runGhc (Just libdir) $ do
dflags <- initDynFlags file
let useCpp = GHC.xopt GHC.Opt_Cpp dflags
fileContents <-
if useCpp
then getPreprocessedSrcDirect cppOptions file
else GHC.liftIO $ readFile file
return $
case parseFile dflags file fileContents of
GHC.PFailed ss m -> Left (srcSpanToSpan ss, GHC.showSDoc dflags m)
GHC.POk _ pmod -> Right pmod
Moreover, with this approach I cannot catch the error message (I just get ExitFailure). Removing the line with GHC.defaultErrorHandler gives me the output shown above.
Many thanks to #adamse for pointing me in the right direction! I have found the answer in Hint's code.
It suffices to override logging in the dynamic flags:
initDynFlags :: GHC.GhcMonad m => FilePath -> m GHC.DynFlags
initDynFlags file = do
dflags0 <- GHC.getSessionDynFlags
src_opts <- GHC.liftIO $ GHC.getOptionsFromFile dflags0 file
(dflags1, _, _) <- GHC.parseDynamicFilePragma dflags0 src_opts
let dflags2 = dflags1 { GHC.log_action = customLogAction }
void $ GHC.setSessionDynFlags dflags2
return dflags2
customLogAction :: GHC.LogAction
customLogAction dflags severity _ _ msg =
case severity of
GHC.SevFatal -> fail $ GHC.showSDoc dflags msg
_ -> return () -- do nothing in the other cases (debug, info, etc.)
The default implementation of GHC.log_action can be found here:
http://haddock.stackage.org/lts-3.10/ghc-7.10.2/src/DynFlags.html#defaultLogAction
The code for parsing remains the same in my question, after having removed the line about GHC.defaultErrorHandler, which is no longer needed, assuming one catches exceptions himself.
I have seen this question before and then the answer was to temporarily redirect stdout and stderr.
To redirect stdout to a file as an example:
import GHC.IO.Handle
import System.IO
main = do file <- openFile "stdout" WriteMode
stdout' <- hDuplicate stdout -- you might want to keep track
-- of the original stdout
hDuplicateTo file stdout -- makes the second Handle a
-- duplicate of the first
putStrLn "hi"
hClose file

Importing 'C' Delay function into Haskell using FFI

There is a function in the wiringPi 'C' library called delay with type
void delay(unsigned int howLong);
This function delays execution of code for howLong milliseconds. I wrote the binding code in haskell to be able to call this function. The haskell code is as follows,
foreign import ccall "wiringPi.h delay" c_delay :: CUInt -> IO ()
hdelay :: Int -> IO ()
hdelay howlong = c_delay (fromIntegral howlong)
After this, I wrote a simple haskell program to call this function. The simply haskell code is as follows..
--After importing relavent libraries I did
main = wiringPiSetup
>> delay 5000
But the delay does not happen or rather the executable generated by the ghc compiler exits right away.
Could someone tell me what could possibly go wrong here? A small nudge in the right direction would help.
Cheers and Regards.
Please ignore the part in block quote, and see update below - I am preserving the original non-solution because of comments associated with it.
You should mark the import as unsafe since you want the main
thread to block while the function is executing (see comment below by
#carl). By default, import is safe, not unsafe. So, changing
the function signature to this should make the main thread block:
foreign import ccall unsafe "wiring.h delay" c_delay :: CUInt -> IO ()
Also, if you plan to write multi-threaded code, GHC docs for multi-threaded FFI is >very useful. This also seems a good starter.
Update
The behavior seems to be due to signal interrupt handling (if I recall correctly, this was added in GHC 7.4+ to fix some bugs). More details here:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Signals
Please note the comment on the above page: Signal handling differs between the threaded version of the runtime and the non-threaded version.
Approach 1 - Handle signal interrupt in FFI code:
A toy code is below which handles the interrupt in sleep. I tested it on Linux 2.6.18 with ghc 7.6.1.
C code:
/** ctest.c **/
#include <unistd.h>
#include <stdio.h>
#include <time.h>
unsigned delay(unsigned sec)
{
struct timespec req={0};
req.tv_sec = sec;
req.tv_nsec = 0;
while (nanosleep(&req, &req) == -1) {
printf("Got interrupt, continuing\n");
continue;
}
return 1;
}
Haskell code:
{-# LANGUAGE ForeignFunctionInterface #-}
-- Filename Test.hs
module Main (main) where
import Foreign.C.Types
foreign import ccall safe "delay" delay :: CUInt -> IO CUInt
main = do
putStrLn "Sleeping"
n <- delay 2000
putStrLn $ "Got return code from sleep: " ++ show n
Now, after compiling with ghc 7.6.1 (command: ghc Test.hs ctest.c), it waits until sleep finishes, and prints a message every time it gets an interrupt signal during sleep:
./Test
Sleeping
Got interrupt, continuing
Got interrupt, continuing
Got interrupt, continuing
Got interrupt, continuing
....
....
Got return code from sleep: 1
Approach 2 - Disable SIGVTALRM before calling FFI code, and re-enable:
I am not sure what the implications are for disabling SIGVTALRM. This is alternative approach which disables SIGVTALRM during FFI call, if you can't alter FFI code. So, FFI code is not interrupted during sleep (assuming it is SIGVTALRM that is causing the interrupt).
{-# LANGUAGE ForeignFunctionInterface #-}
-- Test.hs
module Main (main) where
import Foreign.C.Types
import System.Posix.Signals
foreign import ccall safe "delay" delay :: CUInt -> IO CUInt
main = do
putStrLn "Sleeping"
-- Block SIGVTALRM temporarily to avoid interrupts while sleeping
blockSignals $ addSignal sigVTALRM emptySignalSet
n <- delay 2
putStrLn $ "Got return code from sleep: " ++ show n
-- Unblock SIGVTALRM
unblockSignals $ addSignal sigVTALRM emptySignalSet
return ()

no parse exception

I am trying to cach exception caused by read function:
run :: CurrentData -> IO ()
run current = do
{
x <- (getCommandFromUser) `E.catch` handler;
updated <- executeCommand x current;
run updated;
} where handler :: E.IOException -> IO Command
handler e = do putStrLn "wrong command format" >> return (DoNothing);
In this code function getCommandfrom user gets some string from user and then tries to read some data from this string using "read" function
If read fails there is exception thrown:
*** Exception : prelude.read : no parse
and program exits...
I can't catch this exception - what is type of this exception???
I tried also E.SomeException instead of E.IOException...
E is from import Control.Exception As E
"what is type of this exception?" The type is ErrorCall, also available from Control.Exception. An ErrorCall is what is thrown when the error function is called.
Just change the type of handler and it will work. A last resort to get things working is to catch E.SomeException, but that's almost always the wrong thing to do.

Resources