How to use the dmafd from iotcl VIDIOC_EXPBUF with sendfile? - linux

The ioctl VIDIOC_EXPBUF exports the dma memory as a filedescriptor. I want so transfer these memory over the network using sendfile (because it is really fast compared to send() or write()).
But sendfile() does not work on these filedescriptor. sendfile() returns with Error -1 and Errno is: Illegal seek.
How to get this working?
int buffer_export(int *vfd, int index, int *dmafd)
{
struct v4l2_exportbuffer expbuf;
memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
expbuf.index = index;
if (ioctl(*vfd, VIDIOC_EXPBUF, &expbuf) == -1) {
perror("VIDIOC_EXPBUF");
return -1;
}
*dmafd = expbuf.fd;
return 0;
}
Here the transfer code.
int *vfd;
//Capture Image
int dmafd, err, bytes_send;
int frame_size = 721920;
off_t offset = 0;
err = buffer_export( vfd, 0, &dmafd);
// returns 0
err = sendfile(socket_fd, dmafd ,&offset, frame_size);
//returns with -1
Update:
Browsing the sendfile source I came across the error occurs while checking the input fd.
retval = -ESPIPE; //=-29
if( !(in.file->f_mode & FMODE_PREAD) )
goto in_fd; //error
f_mode=5; which is
/* file is open for reading */
#define FMODE_READ ((__force fmode_t)0x1)
/* file is open for writing */
#define FMODE_WRITE ((__force fmode_t)0x2)
/* file is seekable */
#define FMODE_LSEEK ((__force fmode_t)0x4)
/* file can be accessed using pread */
#define FMODE_PREAD ((__force fmode_t)0x8)
/* file can be accessed using pwrite */
fails

Related

How to splice onto socketfd?

The manual mentioned splice() can transfer data between two arbitrary filedescriptors, also onto a socketfd. This works if the file is send at once. Therefore the filesize has to be lower than PIPE_BUF_SZ (=65536).
But, how to handle bigger files? I want to understand the difference to sendfile() syscall. How would you rewrite the sendfile() syscall?
The second splice returns with Invalid argument. I guess it is because the socketfd is not seekable.
size_t len = 800000; //e.g.
static int do_copy(int in_fd, int out_fd)
{
loff_t in_off = 0, out_off = 0;
static int buf_size = 65536;
off_t len;
int filedes[2];
int err = -1;
if(pipe(filedes) < 0) {
perror("pipe:");
goto out;
}
while(len > 0) {
if(buf_size > len) buf_size = len;
/* move to pipe buffer. */
err = splice(in_fd, &in_off, filedes[1], NULL, buf_size, SPLICE_F_MOVE | SPLICE_F_MORE);
if(err < 0) {
perror("splice:");
goto out_close;
}
/* move from pipe buffer to out_fd */
err = splice(filedes[0], NULL, out_fd, &out_off, buf_size, SPLICE_F_MOVE | SPLICE_F_MORE);
if(err < 0) {
perror("splice2:");
goto out_close;
}
len -= buf_size;
}
err = 0;
out_close:
close(filedes[0]);
close(filedes[1]);
out:
return err;
}
sendfile() systemcall does not check if the filedescriptor is seekable. The only check onto that fd is, if you can read (FMODE_READ) onto the fd.
splice() does some more checks. Among others, if the fd is seekable (FMODE_PREAD) / (FMODE_PWRITE).
That's why sendfile works, but splice won't.

While inserting my kernel module INSMOD exits with error "bad address", warns about "Kernel mismatch"

I am developing this module for custom device that, in fact, a 4*8-bit i-o ports attached to ISA bus with addresses 0x0120 - 0x0123. This driver is based on "scull" by Alessandro Rubini and Jonathan Corbet. My OS is Ubuntu 10.04, kernel is 2.6.32-74 generic, I use built-in console-oriented compiler gcc.
While inserting compiled module using "insmod" I get an error "bad address" and module was not loaded. I've tried to debug it using "printk" and found out that my module successfully gets a range of i-o ports, major and minor numbers and then, when trying to do "Reset_Port" function it generates an error "bad address" and exits.
Can anybody tell me, what am I doing wrong?
Here are __exit and __init functions of my module
void __exit ET3201_exit(void)
{
int i;
dev_t devno = MKDEV(ET3201_major, ET3201_minor);
/* Get rid of our char dev entries */
if (ET3201_devices) {
for (i = 0; i < ET3201_nr_devs; i++) {
ET3201_trim(ET3201_devices + i);
cdev_del(&ET3201_devices[i].cdev);
}
kfree(ET3201_devices);
}
#ifdef ET3201_DEBUG /* use proc only if debugging */
ET3201_remove_proc();
#endif
/* cleanup_module is never called if registering failed */
unregister_chrdev_region(devno, ET3201_nr_devs);
if ( ! port ) release_region(BaseIO, 8);
printk(KERN_INFO "Goodbye, cruel world - ET3201 is unloaded\n");
/* and call the cleanup functions for friend devices */
/*ET3201_access_cleanup();*/
}
/*----------------------------------------------------------------------------*/
/* Set up the char_dev structure for this device. */
static void ET3201_setup_cdev(struct ET3201_dev *dev, int index)
{
int err, devno = MKDEV(ET3201_major, ET3201_minor + index);
cdev_init(&dev->cdev, &ET3201_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &ET3201_fops;
dev->CAMAC_Module_Number = CAMAC_Nmod;
dev->CAMAC_Command_Adress = CAMAC_Adcom;
dev->Driver_Number = ET3201_minor + index;
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be */
if (err)
printk(KERN_NOTICE "Error %d adding ET3201%d", err, index);
}
/*----------------------------------------------------------------------------*/
int __init ET3201_init(void)
{
int result = 0;
int i;
dev_t dev = 0;
BaseIO = Base;
/* Get a range of minor numbers to work with, asking for a dynamic
major unless directed otherwise at load time. */
if (ET3201_major) {
dev = MKDEV(ET3201_major, ET3201_minor);
result = register_chrdev_region(dev, ET3201_nr_devs, "ET3201");
} else {
result = alloc_chrdev_region(&dev, ET3201_minor, ET3201_nr_devs, "ET3201");
ET3201_major = MAJOR(dev);
}
if (result < 0) {
printk(KERN_WARNING "ET3201: can't get major %d\n", ET3201_major);
return result;
}
port = request_region(BaseIO, 8, "ET3201");
if ( port == NULL ) {
printk(KERN_WARNING "ET3201 cannot reserve i-o ports %lu \n", BaseIO);
return -ENODEV;
goto fail;
}
/*
* allocate the devices -- we can't have them static, as the number
* can be specified at load time
*/
ET3201_devices = kmalloc(ET3201_nr_devs * sizeof(struct ET3201_dev), GFP_KERNEL);
if (! ET3201_devices) {
result = -ENOMEM;
printk(KERN_ALERT "ET3201: can't get memory \n");
goto fail; /* Fail gracefully if need be */
}
memset(ET3201_devices, 0, ET3201_nr_devs * sizeof(struct ET3201_dev));
/* Initialize each device. */
for (i = 0; i < ET3201_nr_devs; i++) {
ET3201_devices[i].quantum = ET3201_quantum;
ET3201_devices[i].qset = ET3201_qset;
init_MUTEX(&ET3201_devices[i].sem);
ET3201_setup_cdev(&ET3201_devices[i], i);
}
/* At this point call the init function for any friend device */
dev = MKDEV(ET3201_major, ET3201_minor + ET3201_nr_devs);
/*dev += ET3201_access_init(dev);*/
printk(KERN_INFO "ET3201 is initialized with major %d\n", ET3201_major);
if ( port != NULL ){
printk(KERN_INFO "ET3201 is trying to reset %d devices\n", ET3201_nr_devs);
result = Reset_Port();
}
if ( result != 0 ) {
printk(KERN_ALERT "ET3201: device cannot reset with result %d\n", result);
result = -EFAULT;
goto fail;
}
#ifdef ET3201_DEBUG /* only when debugging */
ET3201_create_proc();
#endif
return 0; /* succeed */
fail:
ET3201_exit();
return result;
}
/*----------------------------------------------------------------------------*/
module_init(ET3201_init);
module_exit(ET3201_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(ET3201_minor);
and next will be Reset_Port()
static int Reset_Port(void)
{
int result = -EIO;
int count;
if (port == NULL) goto fail;
for ( count = 0; count < ET3201_nr_devs; count++ )
{
outb(0x00, ports[count]);
}
wmb(); /*write memory barrier*/
LastOp = E_Reset;
result = 0; /* success */
fail:
return result;
}
EXPORT_SYMBOL(Reset_Port);
Now, after fixing 'int Reset_Port(void)' I've got another problem -
'WARNING: modpost: Found 1 section mismatch(es).'
After debugging I see that this is a result of calling 'ET3201_exit()'
from 'module_init()' - when I remarked this call, warning disappeared.
Surprising that exactly the same call was made in "scull" driver of respected authors - and it works.
Question: What can lead to kernel mismatch in this code?
Yes! The bug is fixed - after declaring ' int Reset_Port(void) ' the module was inserted and removed successfully. I thought,(but it was wrong) that all functions that can be called from within ' module_init() ' must not be declared as static.

accessing i2c platform device from userspace program

I'm trying to access an 24c256 eeprom content from user space in a am335x_starter_kit.
I dont have to add eeprom driver into kernel and make modifications in board.c file because board already uses eeprom to access some board configuration and Mac address information.
I just want to access eeprom content from user space.
I used read and write functions for character devices before but i2c platform devices doesnt have these functions.
struct i2c_driver {
unsigned int class;
int (* attach_adapter) (struct i2c_adapter *);
int (* probe) (struct i2c_client *, const struct i2c_device_id *);
int (* remove) (struct i2c_client *);
void (* shutdown) (struct i2c_client *);
void (* alert) (struct i2c_client *, unsigned int data);
int (* command) (struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id * id_table;
int (* detect) (struct i2c_client *, struct i2c_board_info *);
const unsigned short * address_list;
struct list_head clients;
};
This is the eeprom driver. Board file uses it from kernel to get mac address and board configuration data.
/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/i2c.h>
#include <linux/i2c/at24.h>
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* Accordingly, explicit board-specific configuration data should be used
* in almost all cases. (One partial exception is an SMBus used to access
* "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_data {
struct at24_platform_data chip;
struct memory_accessor macc;
int use_smbus;
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
struct bin_attribute bin;
u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct i2c_client *client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8
#define AT24_BITMASK(x) (BIT(x) - 1)
/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) \
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
static const struct i2c_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
/* spd is a 24c02 in memory DIMMs */
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
/* 24rf08 quirk is handled at i2c-core */
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
/*-------------------------------------------------------------------------*/
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned *offset)
{
unsigned i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return at24->client[i];
}
static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
unsigned long timeout, read_time;
int status, i;
memset(msg, 0, sizeof(msg));
/*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
/*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
break;
case I2C_SMBUS_WORD_DATA:
count = 2;
break;
case I2C_SMBUS_BYTE_DATA:
count = 1;
break;
default:
/*
* When we have a better choice than SMBus calls, use a
* combined I2C message. Write address; then read up to
* io_limit data bytes. Note that read page rollover helps us
* here (unlike writes). msgbuf is u8 and will cast to our
* needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
}
/*
* Reads fail if the previous write didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
read_time = jiffies;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
status = i2c_smbus_read_i2c_block_data(client, offset,
count, buf);
break;
case I2C_SMBUS_WORD_DATA:
status = i2c_smbus_read_word_data(client, offset);
if (status >= 0) {
buf[0] = status & 0xff;
buf[1] = status >> 8;
status = count;
}
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_read_byte_data(client, offset);
if (status >= 0) {
buf[0] = status;
status = count;
}
break;
default:
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
}
dev_dbg(&client->dev, "read %zu#%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(read_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_read(struct at24_data *at24,
char *buf, loff_t off, size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_read(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_read(at24, buf, off, count);
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. This routine
* writes at most one page.
*/
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
unsigned offset, size_t count)
{
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status;
unsigned long timeout, write_time;
unsigned next_page;
/* Get corresponding I2C address and adjust offset */
client = at24_translate_offset(at24, &offset);
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
/* If we'll use I2C calls for I/O, set up the message */
if (!at24->use_smbus) {
int i = 0;
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
}
/*
* Writes fail if the previous one didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
write_time = jiffies;
if (at24->use_smbus) {
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
if (status == 0)
status = count;
} else {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
}
dev_dbg(&client->dev, "write %zu#%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(write_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_write(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_write(at24, buf, off, count);
}
/*-------------------------------------------------------------------------*/
/*
* This lets other kernel code access the eeprom data. For example, it
* might hold a board's Ethernet address, or board-specific calibration
* data generated on the manufacturing floor.
*/
static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_read(at24, buf, offset, count);
}
static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_write(at24, buf, offset, count);
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_OF
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{
const __be32 *val;
struct device_node *node = client->dev.of_node;
if (node) {
if (of_get_property(node, "read-only", NULL))
chip->flags |= AT24_FLAG_READONLY;
val = of_get_property(node, "pagesize", NULL);
if (val)
chip->page_size = be32_to_cpup(val);
}
}
#else
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{ }
#endif /* CONFIG_OF */
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct at24_platform_data chip;
bool writable;
int use_smbus = 0;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
kernel_ulong_t magic;
if (client->dev.platform_data) {
chip = *(struct at24_platform_data *)client->dev.platform_data;
} else {
if (!id->driver_data) {
err = -ENODEV;
goto err_out;
}
magic = id->driver_data;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip.page_size = 1;
/* update chipdata if OF is present */
at24_get_ofdata(client, &chip);
chip.setup = NULL;
chip.context = NULL;
}
if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
err = -EINVAL;
goto err_out;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");
/* Use I2C operations unless we're stuck with SMBus extensions. */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
if (chip.flags & AT24_FLAG_ADDR16) {
err = -EPFNOSUPPORT;
goto err_out;
}
if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
use_smbus = I2C_SMBUS_WORD_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
use_smbus = I2C_SMBUS_BYTE_DATA;
} else {
err = -EPFNOSUPPORT;
goto err_out;
}
}
//???????????????
if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len, (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
at24 = kzalloc(sizeof(struct at24_data) + num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
if (!at24) {
err = -ENOMEM;
goto err_out;
}
mutex_init(&at24->lock);
at24->use_smbus = use_smbus;
at24->chip = chip;
at24->num_addresses = num_addresses;
/*
* Export the EEPROM bytes through sysfs, since that's convenient.
* By default, only root should see the data (maybe passwords etc)
*/
sysfs_bin_attr_init(&at24->bin);
at24->bin.attr.name = "eeprom";
at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
at24->bin.read = at24_bin_read;
at24->bin.size = chip.byte_len;
at24->macc.read = at24_macc_read;
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
unsigned write_max = chip.page_size;
at24->macc.write = at24_macc_write;
at24->bin.write = at24_bin_write;
at24->bin.attr.mode |= S_IWUSR;
if (write_max > io_limit)
write_max = io_limit;
if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
write_max = I2C_SMBUS_BLOCK_MAX;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
if (!at24->writebuf) {
err = -ENOMEM;
goto err_struct;
}
} else {
dev_warn(&client->dev,
"cannot write due to controller restrictions.");
}
}
at24->client[0] = client;
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}
err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
if (err)
goto err_clients;
i2c_set_clientdata(client, at24);
dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", at24->bin.size, client->name,
writable ? "writable" : "read-only", at24->write_max);
if (use_smbus == I2C_SMBUS_WORD_DATA ||
use_smbus == I2C_SMBUS_BYTE_DATA) {
dev_notice(&client->dev, "Falling back to %s reads, "
"performance will suffer\n", use_smbus ==
I2C_SMBUS_WORD_DATA ? "word" : "byte");
}
/* export data to kernel code */
if (chip.setup)
chip.setup(&at24->macc, chip.context);
return 0;
err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i])
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
err_struct:
kfree(at24);
err_out:
dev_dbg(&client->dev, "probe error %d\n", err);
return err;
}
/*-------------------------------------------------------------------------*/
static int __devexit at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;
at24 = i2c_get_clientdata(client);
sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
kfree(at24);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.owner = THIS_MODULE,
},
.probe = at24_probe,
.remove = __devexit_p(at24_remove),
.id_table = at24_ids,
};
static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}
io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");
These are snippets from board file:
static struct i2c_board_info __initdata am335x_i2c0_boardinfo[] = {
{
/* Baseboard board EEPROM */
I2C_BOARD_INFO("24c256", BASEBOARD_I2C_ADDR),
.platform_data = &am335x_baseboard_eeprom_info,
},
.
.
static struct at24_platform_data am335x_baseboard_eeprom_info = {
.byte_len = (256*1024) / 8,
.page_size = 64,
.flags = AT24_FLAG_ADDR16,
.setup = am335x_evm_setup,
.context = (void *)NULL,
};
static void am335x_evm_setup(struct memory_accessor *mem_acc, void *context)
{
int ret;
char tmp[10];
struct device *mpu_dev;
/* 1st get the MAC address from EEPROM */
ret = mem_acc->read(mem_acc, (char *)&am335x_mac_addr,
EEPROM_MAC_ADDRESS_OFFSET, sizeof(am335x_mac_addr));
.
.
.
How can i read from/write into eeprom content from user space.
Should i use sysfs? What should i do?
EEPROM:
It's part of setting the MAC and serial number, but the only way to know if the EEPROM is working is to read its content.
$ cat /sys/bus/i2c/devices/2-0057/eeprom | hexdump -C

Error when reading from Linux FIFO

In the embedded application I'm working on we have a serial port abstraction, and I'm currently working on a simulated variant of said abstraction to use when you are not running on the 'real' hardware. I'm using FIFO files for this, as you can then plug in whathever software you want to communicate with the actual application but I'm having trouble with the "read" function, which flags that you gave it an invalid fd. Though I have used debugging tools to verify that the fd passed to it is the same as has been opened earlier so it should be valid. I cannot find any cause for this problem.
FIFO files are opened through this function:
int createOpenFifo(const std::string& path, int flags)
{
int fd = open(path.c_str(), flags);
if (fd < 0)
{
mkfifo(path.c_str(), 0777);
fd = open(path.c_str(), flags);
if (fd < 0)
{
return -1;
}
}
return fd;
}
And the FIFOs are then written to using the following function:
int write_serial(handle_t handle, size_t length, const uint8_t* pData)
{
SerialFifoData* data = static_cast<SerialFifoData*>(handle);
size_t written = 0;
while (written < length)
{
int result = write(data->writeFd, pData + written, length - written);
if (result < 0)
{
return -1;
}
written += result;
}
return 0;
}
And finally read from using this function:
int read_serial(handle_t handle, size_t buffer_size, uint8_t* pBuffer, size_t* bytes_read)
{
SerialFifoData* data = static_cast<SerialFifoData*>(handle);
int return_val = read(data->readFd, pBuffer, buffer_size);
if (return_val < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK) // Non-blocking, no data
// which flag is raised
// varies between POSIX
// implementations
{
*bytes_read = 0;
return -2;
}
return -1;
}
*bytes_read = return_val;
return 0;
}
I have verified that each function recieves correct input, and the read and write calls are nearly identical to those used for the actual serial port code (the only difference is how the FD is extracted from the handle) where they work just fine.

Kernel Panic after changes in sys_close

I'm doing a course on operating systems and we work in Linux Red Hat 8.0
AS part of an assignment I had to change sys close and sys open. Changes to sys close passed without an incident, but when I introduce the changes to sys close suddenly the OS encounters an error during booting, claiming it cannot mount root fs, and invokes panic. EIP is reportedly at sys close when this happens.
Here are the changes I made (look for the "HW1 additions" comment):
In fs/open.c:
asmlinkage long sys_open(const char * filename, int flags, int mode)
{
char * tmp;
int fd, error;
event_t* new_event;
#if BITS_PER_LONG != 32
flags |= O_LARGEFILE;
#endif
tmp = getname(filename);
fd = PTR_ERR(tmp);
if (!IS_ERR(tmp)) {
fd = get_unused_fd();
if (fd >= 0) {
struct file *f = filp_open(tmp, flags, mode);
error = PTR_ERR(f);
if (IS_ERR(f))
goto out_error;
fd_install(fd, f);
}
/* HW1 additions */
if (current->record_flag==1){
new_event=(event_t*)kmalloc(sizeof(event_t), GFP_KERNEL);
if (!new_event){
new_event->type=Open;
strcpy(new_event->filename, tmp);
file_queue_add(*new_event, current->queue);
}
}
/* End HW1 additions */
out:
putname(tmp);
}
return fd;
out_error:
put_unused_fd(fd);
fd = error;
goto out;
}
asmlinkage long sys_close(unsigned int fd)
{
struct file * filp;
struct files_struct *files = current->files;
event_t* new_event;
char* tmp = files->fd[fd]->f_dentry->d_name.name;
write_lock(&files->file_lock);
if (fd >= files->max_fds)
goto out_unlock;
filp = files->fd[fd];
if (!filp)
goto out_unlock;
files->fd[fd] = NULL;
FD_CLR(fd, files->close_on_exec);
__put_unused_fd(files, fd);
write_unlock(&files->file_lock);
/* HW1 additions */
if(current->record_flag == 1){
new_event=(event_t*)kmalloc(sizeof(event_t), GFP_KERNEL);
if (!new_event){
new_event->type=Close;
strcpy(new_event->filename, tmp);
file_queue_add(*new_event, current->queue);
}
}
/* End HW1 additions */
return filp_close(filp, files);
out_unlock:
write_unlock(&files->file_lock);
return -EBADF;
}
The task_struct defined in schedule.h was changed at the end to include:
unsigned int record_flag; /* when zero: do not record. when one: record. */
file_queue* queue;
And file queue as well as event t are defined in a separate file as follows:
typedef enum {Open, Close} EventType;
typedef struct event_t{
EventType type;
char filename[256];
}event_t;
typedef struct file_quque_t{
event_t queue[101];
int head, tail;
}file_queue;
file queue add works like this:
void file_queue_add(event_t event, file_queue* queue){
queue->queue[queue->head]=event;
queue->head = (queue->head+1) % 101;
if (queue->head==queue->tail){
queue->tail=(queue->tail+1) % 101;
}
}
if (!new_event) {
new_event->type = …
That's equivalent to if (new_event == NULL). I think you mean if (new_event != NULL), which the kernel folks typically write as if (new_event).
Can you please post the stackdump of the error. I don't see a place where queue_info structure is allocated memory. One more thing is you cannot be sure that process record_flag will be always zero if unassigned in kernel, because kernel is a long running program and memory contains garbage.
Its also possible to check the exact location in the function is occurring by looking at the stack trace.

Resources