Why did 'reset_index(drop=True)' function unwantedly remove column? - python-3.x

I have a Pandas dataframe named data_match. It contains columns '_worker_id', '_unit_id', and 'caption'. (Please see attached screenshot for some of the rows in this dataframe)
Let's say the index column is not in ascending order (I want the index to be 0, 1, 2, 3, 4...n) and I want it to be in ascending order. So I ran the following function attempting to reset the index column:
data_match=data_match.reset_index(drop=True)
I was able to get the function to return the correct output in my computer using Python 3.6. However, when my coworker ran that function in his computer using Python 3.6, the '_worker_id' column got removed.
Is this due to the (drop=True) clause next to reset_index? But I didn't know why it worked in my computer and not in my coworker's computer. Can anybody advise?

As the saying goes, "What happens in your interpreter stays in your
interpreter". It's impossible to explain the discrepancy without seeing the
full history of commands entered into both Python interactive sessions.
However, it is possible to venture a guess:
df.reset_index(drop=True)
drops the current index of the DataFrame and replaces it with an index of
increasing integers. It never drops columns.
So, in your interactive session, _worker_id was a column. In your co-worker's
interactive session, _worker_id must have been an index level.
The visual difference can be somewhat subtle. For example, below, df has a
_worker_id column while df2 has a _worker_id index level:
In [190]: df = pd.DataFrame({'foo':[1,2,3], '_worker_id':list('ABC')}); df
Out[190]:
_worker_id foo
0 A 1
1 B 2
2 C 3
In [191]: df2 = df.set_index('_worker_id', append=True); df2
Out[191]:
foo
_worker_id
0 A 1
1 B 2
2 C 3
Notice that the name _worker_id appears one line below foo when it is an
index level, and on the same line as foo when it is a column. That is the only
visual clue you get when looking at the str or repr of a DataFrame.
So to repeat: When _worker_index is a column, the column is unaffected by
df.reset_index(drop=True):
In [194]: df.reset_index(drop=True)
Out[194]:
_worker_id foo
0 A 1
1 B 2
2 C 3
But _worker_index is dropped when it is part of the index:
In [195]: df2.reset_index(drop=True)
Out[195]:
foo
0 1
1 2
2 3

Related

groupby consecutive identical values in pandas dataframe and cumulative count of the number of occurences

I have a problem where I would like to count the number of times the current value has not changed in a dataframe over rolling periods.
For example:
df = pd.DataFrame({'col':list('aaaabbab')})
would somehow give output of
0
1
2
3
0
1
0
0
I have been trying something along the following
df['col'] = df['col'] == df['col'].shift(1)
df.rolling(window=3).sum().reset_index(drop=True, level=0)
I have added in the rolling as I will want to look at the full data set in terms of rolling periods but even without having it over rolling periods I can not quite figure out the logic.
I am not sure if I am missing something simple or this may not be possible using shift
You need to generate a grouper for the change in values. For this compare each value with the previous one and apply a cumsum. This gives you groups in the itertools.groupby style ([1, 1, 1, 1, 2, 2, 3, 4]), finally group and apply a cumcount.
df['count'] = (df.groupby(df['col'].ne(df['col'].shift()).cumsum())
.cumcount()
)
output:
col count
0 a 0
1 a 1
2 a 2
3 a 3
4 b 0
5 b 1
6 a 0
7 b 0
edit: for fun here is a solution using itertools (much faster):
from itertools import groupby, chain
df['count'] = list(chain(*(list(range(len(list(g))))
for _,g in groupby(df['col']))))
NB. this runs much faster (88 µs vs 707 µs on the provided example)
I can't comment so just to add some more to #mozway answer.
My goal was to count consecutives value for an entire huge dataframe effectively.
The pb I encounter is that by construction
np.nan == np.nan
will return False so you could have a whole column full of only NaN and yet the counter will be at 0.
A simple workaround would be to replace all NaN in your df by a value not already in it.
For instance in the case of a float dataset you could do
df.fillna('NA')
which will work but by changing the dtype of your columns to Object the following code will be much slower (20x on my set up).
I would rather advised something like :
all_values = list(np.unique(np.array(df)))
all_values = [a for a in all_values if a==a]
unik_val = min(all_values)-1
temp = df.fillna(unik_val).copy()
from itertools import groupby, chain
for col in temp.columns:
temp[col] = list(chain(*(list(range(len(list(g))))
for _,g in groupby(temp[col]))))
count_df

How to call a created funcion with pandas apply to all rows (axis=1) but only to some specific rows of a dataframe?

I have a function which sends automated messages to clients, and takes as input all the columns from a dataframe like the one below.
name
phone
status
date
name_1
phone_1
sending
today
name_2
phone_2
sending
yesterday
I iterate through the dataframe with a pandas apply (axis=1) and use the values on the columns of each row as inputs to my function. At the end of it, after sending, it changes the status to "sent". The thing is I only want to send to the clients whose date reference is "today". Now, with pandas.apply(axis=1) this is perfectly doable, but in order to slice the clients with "today" value, I need to:
create a new dataframe with today's value,
remove it from the original, and then
reappend it to the original.
I thought about running through the whole dataframe and ignore the rows which have dates different than "today", but if my dataframe keeps growing, I'm afraid of the whole process becoming slower.
I saw examples of this being done with mask, although usually people only use 1 column, and I need more than just the one. Is there any way to do this with pandas apply?
Thank you.
I think you can use .loc to filter the data and apply func to it.
In [13]: df = pd.DataFrame(np.random.rand(5,5))
In [14]: df
Out[14]:
0 1 2 3 4
0 0.085870 0.013683 0.221890 0.533393 0.622122
1 0.191646 0.331533 0.259235 0.847078 0.649680
2 0.334781 0.521263 0.402030 0.973504 0.903314
3 0.189793 0.251130 0.983956 0.536816 0.703726
4 0.902107 0.226398 0.596697 0.489761 0.535270
if we want double the values of rows where the value in first column > 0.3
Out[16]:
0 1 2 3 4
2 0.334781 0.521263 0.402030 0.973504 0.903314
4 0.902107 0.226398 0.596697 0.489761 0.535270
In [18]: df.loc[df[0] > 0.3] = df.loc[df[0] > 0.3].apply(lambda x: x*2, axis=1)
In [19]: df
Out[19]:
0 1 2 3 4
0 0.085870 0.013683 0.221890 0.533393 0.622122
1 0.191646 0.331533 0.259235 0.847078 0.649680
2 0.669563 1.042527 0.804061 1.947008 1.806628
3 0.189793 0.251130 0.983956 0.536816 0.703726
4 1.804213 0.452797 1.193394 0.979522 1.070540

How to use dataframe column in for loop

I am trying to implement a formula to create a new column in Dataframe using existing column but that column is a summation from 0 to a number present in some other column.
I was trying something like this:
dataset['B']=sum([1/i for i in range(dataset['A'])])
I know something like this would work
dataset['B']=sum([1/i for i in range(10)])
but I want to make this 10 dynamic based on some different column.
I keep on getting this error.
TypeError: 'Series' object cannot be interpreted as an integer
First of all, I should admit that I could not understand you question completely. However, what I understood that you want to iterate over the rows of a DataFrame and make a new column by doing some operation/s on that value.
Is that is so, then I would recommend you following link
Regarding TypeError: 'Series' object cannot be interpreted as an integer:
The init signature range() takes integers as input. i.e [i for i in range(10)] should give you [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. However, if one of the value from your dataset['A'] is float, or not integer , this might result in the error you are having. Moreover, if you notice, the first value is a zero, as a result, 1/i should result in a different error. As a result, you might have to rewrite the code as [1/i for i in range (1 , row_value_of_dataset['A'])]
It will be highly appreciate if you could make an example of what you DataFrame might look like and what is your desired output. Then perhaps it is easier to post a solution.
BTW forgot to post what I understood from your question:
#assume the data:
>>>import pandas as pd
>>>data = pd.DataFrame({'A': (1, 2, 3, 4)})
#the data
>>>data
A
0 1
1 2
2 3
3 4
#doing operation on each of the rows
>>>data['B']=data.apply(lambda row: sum([1/i for i in range(1, row.A)] ), axis=1)
# Column B is the newly added data
>>>data
A B
0 1 0.000000
1 2 1.000000
2 3 1.500000
3 4 1.833333
Perhaps explicitly use cumsum, or even apply?
Anyway trying to move an array/list item directly into a dataframe and seem to view this as a dictionary. Try something like this, I've not tested it,
array_x = [x, 1/x for x in dataset.values.tolist()] # or `dataset.A.tolist()`
df = pd.DataFrame(data=(np.asarray(array_x)))
df.columns = [A, B]
Here the idea is to break the Series apart into a list, and input the list into a dataframe. This can be explicitly done without needing to go Series->list->dataframe and is not very efficient.

pandas how to flatten a list in a column while keeping list ids for each element

I have the following df,
A id
[ObjectId('5abb6fab81c0')] 0
[ObjectId('5abb6fab81c3'),ObjectId('5abb6fab81c4')] 1
[ObjectId('5abb6fab81c2'),ObjectId('5abb6fab81c1')] 2
I like to flatten each list in A, and assign its corresponding id to each element in the list like,
A id
ObjectId('5abb6fab81c0') 0
ObjectId('5abb6fab81c3') 1
ObjectId('5abb6fab81c4') 1
ObjectId('5abb6fab81c2') 2
ObjectId('5abb6fab81c1') 2
I think the comment is coming from this question ? you can using my original post or this one
df.set_index('id').A.apply(pd.Series).stack().reset_index().drop('level_1',1)
Out[497]:
id 0
0 0 1.0
1 1 2.0
2 1 3.0
3 1 4.0
4 2 5.0
5 2 6.0
Or
pd.DataFrame({'id':df.id.repeat(df.A.str.len()),'A':df.A.sum()})
Out[498]:
A id
0 1 0
1 2 1
1 3 1
1 4 1
2 5 2
2 6 2
This probably isn't the most elegant solution, but it works. The idea here is to loop through df (which is why this is likely an inefficient solution), and then loop through each list in column A, appending each item and the id to new lists. Those two new lists are then turned into a new DataFrame.
a_list = []
id_list = []
for index, a, i in df.itertuples():
for item in a:
a_list.append(item)
id_list.append(i)
df1 = pd.DataFrame(list(zip(alist, idlist)), columns=['A', 'id'])
As I said, inelegant, but it gets the job done. There's probably at least one better way to optimize this, but hopefully it gets you moving forward.
EDIT (April 2, 2018)
I had the thought to run a timing comparison between mine and Wen's code, simply out of curiosity. The two variables are the length of column A, and the length of the list entries in column A. I ran a bunch of test cases, iterating by orders of magnitude each time. For example, I started with A length = 10 and ran through to 1,000,000, at each step iterating through randomized A entry list lengths of 1-10, 1-100 ... 1-1,000,000. I found the following:
Overall, my code is noticeably faster (especially at increasing A lengths) as long as the list lengths are less than ~1,000. As soon as the randomized list length hits the ~1,000 barrier, Wen's code takes over in speed. This was a huge surprise to me! I fully expected my code to lose every time.
Length of column A generally doesn't matter - it simply increases the overall execution time linearly. The only case in which it changed the results was for A length = 10. In that case, no matter the list length, my code ran faster (also strange to me).
Conclusion: If the list entries in A are on the order of a few hundred elements (or less) long, my code is the way to go. But if you're working with huge data sets, use Wen's! Also worth noting that as you hit the 1,000,000 barrier, both methods slow down drastically. I'm using a fairly powerful computer, and each were taking minutes by the end (it actually crashed on the A length = 1,000,000 and list length = 1,000,000 case).
Flattening and unflattening can be done using this function
def flatten(df, col):
col_flat = pd.DataFrame([[i, x] for i, y in df[col].apply(list).iteritems() for x in y], columns=['I', col])
col_flat = col_flat.set_index('I')
df = df.drop(col, 1)
df = df.merge(col_flat, left_index=True, right_index=True)
return df
Unflattening:
def unflatten(flat_df, col):
flat_df.groupby(level=0).agg({**{c:'first' for c in flat_df.columns}, col: list})
After unflattening we get the same dataframe except column order:
(df.sort_index(axis=1) == unflatten(flatten(df)).sort_index(axis=1)).all().all()
>> True
To create unique index you can call reset_index after flattening

Python Pandas: Get index of rows which column matches certain value (max) [duplicate]

How can I find the row for which the value of a specific column is maximal?
df.max() will give me the maximal value for each column, I don't know how to get the corresponding row.
Use the pandas idxmax function. It's straightforward:
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].idxmax()
3
>>> df['B'].idxmax()
4
>>> df['C'].idxmax()
1
Alternatively you could also use numpy.argmax, such as numpy.argmax(df['A']) -- it provides the same thing, and appears at least as fast as idxmax in cursory observations.
idxmax() returns indices labels, not integers.
Example': if you have string values as your index labels, like rows 'a' through 'e', you might want to know that the max occurs in row 4 (not row 'd').
if you want the integer position of that label within the Index you have to get it manually (which can be tricky now that duplicate row labels are allowed).
HISTORICAL NOTES:
idxmax() used to be called argmax() prior to 0.11
argmax was deprecated prior to 1.0.0 and removed entirely in 1.0.0
back as of Pandas 0.16, argmax used to exist and perform the same function (though appeared to run more slowly than idxmax).
argmax function returned the integer position within the index of the row location of the maximum element.
pandas moved to using row labels instead of integer indices. Positional integer indices used to be very common, more common than labels, especially in applications where duplicate row labels are common.
For example, consider this toy DataFrame with a duplicate row label:
In [19]: dfrm
Out[19]:
A B C
a 0.143693 0.653810 0.586007
b 0.623582 0.312903 0.919076
c 0.165438 0.889809 0.000967
d 0.308245 0.787776 0.571195
e 0.870068 0.935626 0.606911
f 0.037602 0.855193 0.728495
g 0.605366 0.338105 0.696460
h 0.000000 0.090814 0.963927
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
In [20]: dfrm['A'].idxmax()
Out[20]: 'i'
In [21]: dfrm.iloc[dfrm['A'].idxmax()] # .ix instead of .iloc in older versions of pandas
Out[21]:
A B C
i 0.688343 0.188468 0.352213
i 0.879000 0.105039 0.900260
So here a naive use of idxmax is not sufficient, whereas the old form of argmax would correctly provide the positional location of the max row (in this case, position 9).
This is exactly one of those nasty kinds of bug-prone behaviors in dynamically typed languages that makes this sort of thing so unfortunate, and worth beating a dead horse over. If you are writing systems code and your system suddenly gets used on some data sets that are not cleaned properly before being joined, it's very easy to end up with duplicate row labels, especially string labels like a CUSIP or SEDOL identifier for financial assets. You can't easily use the type system to help you out, and you may not be able to enforce uniqueness on the index without running into unexpectedly missing data.
So you're left with hoping that your unit tests covered everything (they didn't, or more likely no one wrote any tests) -- otherwise (most likely) you're just left waiting to see if you happen to smack into this error at runtime, in which case you probably have to go drop many hours worth of work from the database you were outputting results to, bang your head against the wall in IPython trying to manually reproduce the problem, finally figuring out that it's because idxmax can only report the label of the max row, and then being disappointed that no standard function automatically gets the positions of the max row for you, writing a buggy implementation yourself, editing the code, and praying you don't run into the problem again.
You might also try idxmax:
In [5]: df = pandas.DataFrame(np.random.randn(10,3),columns=['A','B','C'])
In [6]: df
Out[6]:
A B C
0 2.001289 0.482561 1.579985
1 -0.991646 -0.387835 1.320236
2 0.143826 -1.096889 1.486508
3 -0.193056 -0.499020 1.536540
4 -2.083647 -3.074591 0.175772
5 -0.186138 -1.949731 0.287432
6 -0.480790 -1.771560 -0.930234
7 0.227383 -0.278253 2.102004
8 -0.002592 1.434192 -1.624915
9 0.404911 -2.167599 -0.452900
In [7]: df.idxmax()
Out[7]:
A 0
B 8
C 7
e.g.
In [8]: df.loc[df['A'].idxmax()]
Out[8]:
A 2.001289
B 0.482561
C 1.579985
Both above answers would only return one index if there are multiple rows that take the maximum value. If you want all the rows, there does not seem to have a function.
But it is not hard to do. Below is an example for Series; the same can be done for DataFrame:
In [1]: from pandas import Series, DataFrame
In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])
In [3]: s.idxmax()
Out[3]: 'b'
In [4]: s[s==s.max()]
Out[4]:
b 4
c 4
dtype: int64
df.iloc[df['columnX'].argmax()]
argmax() would provide the index corresponding to the max value for the columnX. iloc can be used to get the row of the DataFrame df for this index.
A more compact and readable solution using query() is like this:
import pandas as pd
df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
print(df)
# find row with maximum A
df.query('A == A.max()')
It also returns a DataFrame instead of Series, which would be handy for some use cases.
Very simple: we have df as below and we want to print a row with max value in C:
A B C
x 1 4
y 2 10
z 5 9
In:
df.loc[df['C'] == df['C'].max()] # condition check
Out:
A B C
y 2 10
If you want the entire row instead of just the id, you can use df.nlargest and pass in how many 'top' rows you want and you can also pass in for which column/columns you want it for.
df.nlargest(2,['A'])
will give you the rows corresponding to the top 2 values of A.
use df.nsmallest for min values.
The direct ".argmax()" solution does not work for me.
The previous example provided by #ely
>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
A B C
0 1.232853 -1.979459 -0.573626
1 0.140767 0.394940 1.068890
2 0.742023 1.343977 -0.579745
3 2.125299 -0.649328 -0.211692
4 -0.187253 1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1
returns the following message :
FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.
So that my solution is :
df['A'].values.argmax()
mx.iloc[0].idxmax()
This one line of code will give you how to find the maximum value from a row in dataframe, here mx is the dataframe and iloc[0] indicates the 0th index.
Considering this dataframe
[In]: df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])
[Out]:
A B C
0 -0.253233 0.226313 1.223688
1 0.472606 1.017674 1.520032
2 1.454875 1.066637 0.381890
3 -0.054181 0.234305 -0.557915
Assuming one want to know the rows where column "C" is max, the following will do the work
[In]: df[df['C']==df['C'].max()])
[Out]:
A B C
1 0.472606 1.017674 1.520032
The idmax of the DataFrame returns the label index of the row with the maximum value and the behavior of argmax depends on version of pandas (right now it returns a warning). If you want to use the positional index, you can do the following:
max_row = df['A'].values.argmax()
or
import numpy as np
max_row = np.argmax(df['A'].values)
Note that if you use np.argmax(df['A']) behaves the same as df['A'].argmax().
Use:
data.iloc[data['A'].idxmax()]
data['A'].idxmax() -finds max value location in terms of row
data.iloc() - returns the row
If there are ties in the maximum values, then idxmax returns the index of only the first max value. For example, in the following DataFrame:
A B C
0 1 0 1
1 0 0 1
2 0 0 0
3 0 1 1
4 1 0 0
idxmax returns
A 0
B 3
C 0
dtype: int64
Now, if we want all indices corresponding to max values, then we could use max + eq to create a boolean DataFrame, then use it on df.index to filter out indexes:
out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())
Output:
A [0, 4]
B [3]
C [0, 1, 3]
dtype: object
what worked for me is:
df[df['colX'] == df['colX'].max()
You then get the row in your df with the maximum value of colX.
Then if you just want the index you can add .index at the end of the query.

Resources