Haskell: Parse error in pattern x ++ xs - haskell

Doing the third of the 99-Haskell problems (I am currently trying to learn the language) I tried to incorporate pattern matching as well as recursion into my function which now looks like this:
myElementAt :: [a] -> Int -> a
myElementAt (x ++ xs) i =
if length (x ++ xs) == i && length xs == 1 then xs!!0
else myElementAt x i
Which gives me Parse error in pattern: x ++ xs. The questions:
Why does this give me a parse error? Is it because Haskell is no idea where to cut my list (Which is my best guess)?
How could I reframe my function so that it works? The algorithmic idea is to check wether the list has the length as the specified inde; if yes return the last elemen; if not cut away one element at the end of the list and then do the recursion.
Note: I know that this is a really bad algorithm, but it I've set myself the challenge to write that function including recursion and pattern matching. I also tried not to use the !! operator, but that is fine for me since the only thing it really does (or should do if it compiled) is to convert a one-element list into that element.

Haskell has two different kinds of value-level entities: variables (this also includes functions, infix operators like ++ etc.) and constructors. Both can be used in expressions, but only constructors can also be used in patterns.
In either case, it's easy to tell whether you're dealing with a variable or constructor: a constructor always starts with an uppercase letter (e.g. Nothing, True or StateT) or, if it's an infix, with a colon (:, :+). Everything else is a variable. Fundamentally, the difference is that a constructor is always a unique, immediately matcheable value from a predefined collection (namely, the alternatives of a data definition), whereas a variable can just have any value, and often it's in principle not possible to uniquely distinguish different variables, in particular if they have a function type.
Yours is actually a good example for this: for the pattern match x ++ xs to make sense, there would have to be one unique way in which the input list could be written in the form x ++ xs. Well, but for, say [0,1,2,3], there are multiple different ways in which this can be done:
[] ++[0,1,2,3]
[0] ++ [1,2,3]
[0,1] ++ [2,3]
[0,1,2] ++ [3]
[0,1,2,3]++ []
Which one should the runtime choose?

Presumably, you're trying to match the head and tail part of a list. Let's step through it:
myElementAt (x:_) 0 = x
This means that if the head is x, the tail is something, and the index is 0, return the head. Note that your x ++ x is a concatenation of two lists, not the head and tail parts.
Then you can have
myElementAt(_:tl) i = myElementAt tl (i - 1)
which means that if the previous pattern was not matched, ignore the head, and take the i - 1 element of the tail.

In patterns, you can only use constructors like : and []. The append operator (++) is a non-constructor function.
So, try something like:
myElementAt :: [a] -> Int -> a
myElementAt (x:xs) i = ...
There are more issues in your code, but at least this fixes your first problem.

in standard Haskell pattern matches like this :
f :: Int -> Int
f (g n 1) = n
g :: Int -> Int -> Int
g a b = a+b
Are illegal because function calls aren't allowed in patterns, your case is just a special case as the operator ++ is just a function.
To pattern match on lists you can do it like this:
myElementAt :: [a] -> Int -> a
myElementAt (x:xs) i = // result
But in this case x is of type a not [a] , it is the head of the list and xs is its tail, you'll need to change your function implementation to accommodate this fact, also this function will fail with the empty list []. However that's the idiomatic haskell way to pattern match aginst lists.
I should mention that when I said "illegal" I meant in standard Haskell, there are GHC extensions that give something similar to that , it's called ViewPatterns But I don't think you need it especially that you're still learning.

Related

The length of a list without the "length" function in Haskell

I want to see how long a list is, but without using the function length. I wrote this program and it does not work. Maybe you can tell me why? Thanks!
let y = 0
main = do
list (x:xs) = list (xs)
y++
list :: [Integer] -> Integer
list [] = y
Your program looks quite "imperative": you define a variable y, and then somehow write a do, that calls (?) the list function (?) that automagically seems to "return y" and then you want to increment y.
That's not how Haskell (and most functional and declarative) languages work:
in a declarative language, you define a variable only once, after the value is set, there is usually no way to alter its value,
in Haskell a do usually is used for monads, whereas the length is a pure function,
the let is a syntax construction to define a variable within the scope of an expression,
...
In order to program Haskell (or any functional language), you need to "think functional": think how you would solve the problem in a mathematical way using only functions.
In mathematics, you would say that the empty list [] clearly has length 0. Furthermore in case the list is not empty, there is a first element (the "head") and remaining elements (the "tail"). In that case the result is one plus the length of the tail. We can convert that in a mathematical expression, like:
Now we can easily translate that function into the following Haskell code:
ownLength :: [a] -> Int
ownLength [] = 0
ownLength (_:xs) = 1 + ownLength xs
Now in Haskell, one usually also uses accumulators in order to perform tail recursion: you pass a parameter through the recursive calls and each time you update the variable. When you reach the end of your recursion, you return - sometimes after some post-processing - the accumulator.
In this case the accumulator would be the so far seen length, so you could write:
ownLength :: [a] -> Int
ownLength = ownLength' 0
where ownLength' a [] = a
ownLength' a (_:xs) = ownLength' (a+1) xs
It looks you still think in an imperative way (not the functional way). For example:
you try to change the value of a "variable" (i.e. y++)
you try to use "global variable" (i.e. y) in the body of the list function
Here is the possible solution to your problem:
main = print $ my_length [1..10]
my_length :: [Integer] -> Integer
my_length [] = 0
my_length (_:xs) = 1 + my_length xs
You can also run this code here: http://ideone.com/mjUwL9.
Please also note that there is no need to require that your list consists of Integer values. In fact, you can create much more "agnostic" version of your function by using the following declaration:
my_length :: [a] -> Integer
Implementation of this function doesn't rely on the type of items from the list, thus you can use it for a list of any type. In contrast, you couldn't be that much liberal for, for example, my_sum function (a potential function that calculates the sum of elements from the given list). In this situation, you should define that your list consists of some numerical type items.
At the end, I'd like to suggest you a fantastic book about Haskell programming: http://learnyouahaskell.com/chapters.
Other answers have already beautifully explained the proper functional approach. It looks like an overkill but here is another way of implementing the length function by using only available higher order functions.
my_length :: [a] -> Integer
my_length = foldr (flip $ const . (+1)) 0
I've found this solution in Learn you a haskell.
length' xs = sum [1 | _ <- xs]
It replaces every element of the list with 1 and sums it up.
Probably the simplest way is to convert all elements to 1 and then to sum the new elements:
sum . map (const 1)
For added speed:
foldl' (+) 0 . map (const 1)

Using patterns to find the nth element

I'm working through Learn You A Haskell in order to come up to speed with the basics of Haskell. I'm very comfortable with both functional programming and pattern matching, but the latter more so with how Mathematica does it.
In the same spirit as the naïve implementation of head in Chapter 4.1, I proceeded with a naïve implementation of last as:
last1 :: [a] -> a
last1 (_:x:[]) = x
However, calling last1 [1,2,3,4] gave an error Exception: ... Non-exhaustive patterns in function last1. I understand that this error implies that the pattern specified does not cover all possible inputs and usually, a catch-all pattern is necessary (which I've not provided). However, I'm not exactly sure why I get this error for my input.
Question 1: My understanding (of my incorrect approach) is that the first element is captured by _ and the rest get assigned to x, which isn't exactly what I had intended. However, shouldn't this give a type error, because I specified [a] -> a, but x is now a list?
Note that this is not about how to write a working last function — I know I can write it as (among other possibilities)
last2 :: [a] -> a
last2 [x] = x
last2 (_:x) = last2 x
Question 2: Along the same theme of better understanding pattern matching in Haskell, how can I use pattern matching to pick out the last element or more generally, the nth element from a given list, say, [1..10]?
This answer suggests that you can bind the last element using pattern matching with the ViewPatterns extension, but it seems strange that there isn't an analogous "simple" pattern like for head
In Mathematica, I would probably write it as:
Range[10] /. {Repeated[_, {5}], x_, ___} :> x
(* 6 *)
to pick out the 6th element and
Range[10] /. {___, x_} :> x
(* 10 *)
to pick out the last element of a non-empty list.
I apologize if this is covered later in the text, but I'm trying to relate each topic and concept as I come across them, to how it is handled in other languages that I know so that I can appreciate the differences and similarities.
To make sense of the result of your first attempt, you need to see how the
list data is defined. Lists enjoy a somewhat special syntax, but you would
write it something like this.
data List a = (:) a (List a)
| []
So, your list [1 .. 10] is actually structured as
(1 : (2 : (3 : (4 : []))))
In addition, due to the right associativity of the (:) operator, your pattern
for last1 actually looks like
last1 :: [a] -> a
last1 (_:(x:[])) = x
That is why 'x' has same type as an element of your list; it is the first
argument to the (:) constructor.
Pattern matching allows you to deconstruct data structures like lists, but you
need to know what "shape" they have to do so. That is why you cannot directly
specify a pattern that will extract the last element of a list, because there
are an infinite number of lengths a list can have. That is why the working
solution (last2) uses recursion to solve the problem. You know what pattern
a list of length one has and where to find the final element; for everything
else, you can just throw away the first element and extract the last element
of the resulting, shorter, list.
If you wanted, you could add more patterns, but it would not prove that
helpful. You could write it as
last2 :: [a] -> a
last2 (x:[]) = x
last2 (_:x:[]) = x
last2 (_:_:x:[]) = x
...
last2 (x:xs) = last2 xs
But without an infinite number of cases, you could never complete the function
for all lengths of input lists. Its even more dubious when you consider the fact that
lists can actually be infinitely long; what pattern would you use to match that?
There is no way to have pattern match get the "last" element without using view patterns. That is because there is no way to get the last element of a list without using recursion (at least implicitly), and what is more, there is no decidable way to get the last element.
Your code
last1 (_:x:[]) = x
should be parsed like
last1 (_:(x:[])) = x
which can be de-sugared into
last1 a = case a of
(_:b) -> case b of
(x:c) -> case c of
[] -> x
having completed this exercise we see what your code does: you have written a pattern that will match a list IF the outermost constructor of a list is a cons cell AND the next constructor is a cons AND the third constructor is a nil.
so in the case of
last1 [1,2,3,4]
we have
last1 [1,2,3,4]
= last1 (1:(2:(3:(4:[]))))
= case (1:(2:(3:(4:[])))) of
(_:b) -> case b of
(x:c) -> case c of
[] -> x
= case (2:(3:(4:[]))) of
(x:c) -> case c of
[] -> x
= let x = 2 in case (3:(4:[])) of
[] -> x
= pattern match failure
Your example
last1 (_:x:[]) = x
only matches lists containing two elements i.e. lists of the form a:b:[]. _ matches the head of the list without binding, x matches the following element, and the empty list matches itself.
When pattern matching lists, only the right-most item represents a list - the tail of the matched list.
You can get the nth element from a list with a function like:
getNth :: [a] -> Int -> a
getNth [] _ = error "Out of range"
getNth (h:t) 0 = h
getNth (h:t) n = getNth t (n-1)
This built-in using the !! operator e.g. [1..10] !! 5
You can indeed use ViewPatterns to do pattern matching at the end of a list, so let's do:
{-# LANGUAGE ViewPatterns #-}
and redefine your last1 and last2 by reversing the list before we pattern match.
This makes it O(n), but that's unavoidable with a list.
last1 (reverse -> (x:_)) = x
The syntax
mainFunction (viewFunction -> pattern) = resultExpression
is syntactic sugar for
mainFunction x = case viewFunction x of pattern -> resultExpression
so you can see it actually just reverses the list then pattern matches that, but it feels nicer.
viewFunction is just any function you like.
(One of the aims of the extension was to allow people to cleanly and easily use accessor functions
for pattern matching so they didn't have to use the underlying structure of their data type when
defining functions on it.)
This last1 gives an error if the list is empty, just like the original last does.
*Main> last []
*** Exception: Prelude.last: empty list
*Main> last1 []
*** Exception: Patterns.so.lhs:7:6-33: Non-exhaustive patterns in function last1
Well, OK, not exactly, but we can change that by adding
last1 _ = error "last1: empty list"
which gives you
*Main> last1 []
*** Exception: last1: empty list
We can of course use the same trick for last2:
last2 (reverse -> (_:x:_)) = x
last2 _ = error "last2: list must have at least two elements"
But it would be nicer to define
maybeLast2 (reverse -> (_:x:_)) = Just x
maybeLast2 _ = Nothing
You can carry on this way with for example last4:
last4 (reverse -> (_:_:_:x:_)) = x
And you can see that using the reverse viewpattern,
we've changed the semantics of (_:_:_:x:_) from
(ignore1st,ignore2nd,ignore3rd,get4th,ignoreTheRestOfTheList) to
(ignoreLast,ignore2ndLast,ignore3rdLast,get4thLast,ignoreTheRestOfTheList).
You note that in Mathematica, the number of underscores is used to indicate the number of elements being ignored.
In Haskell, we just use the one _, but it can be used for any ignored value, and in the presence of the
asymmetric list constructor :, the semantics depend on which side you're on, so in a:b, the a must mean an
element and the b must be a list (which could itself be c:d because : is right associative - a:b:c means
a:(b:c)). This is why a final underscore in any list pattern reresents ignoreTheRestOfTheList, and in the
presence of the reverse viewfunction, that means ignoring the front elements of the list.
The recursion/backtracking that's hidden under the hood in Mathematica is explicit here with the viewFunction reverse (which is a recursive function).

Can you use pattern matching to bind the last element of a list?

Since there is a way to bind the head and tail of a list via pattern matching, I'm wondering if you can use pattern matching to bind the last element of a list?
Yes, you can, using the ViewPatterns extension.
Prelude> :set -XViewPatterns
Prelude> let f (last -> x) = x*2
Prelude> f [1, 2, 3]
6
Note that this pattern will always succeed, though, so you'll probably want to add a pattern for the case where the list is empty, else last will throw an exception.
Prelude> f []
*** Exception: Prelude.last: empty list
Also note that this is just syntactic sugar. Unlike normal pattern matching, this is O(n), since you're still accessing the last element of a singly-linked list. If you need more efficient access, consider using a different data structure such as Data.Sequence, which offers O(1) access to both ends.
You can use ViewPatterns to do pattern matching at the end of a list, so let's do
{-# LANGUAGE ViewPatterns #-}
and use reverse as the viewFunction, because it always succeeds, so for example
printLast :: Show a => IO ()
printLast (reverse -> (x:_)) = print x
printLast _ = putStrLn "Sorry, there wasn't a last element to print."
This is safe in the sense that it doesn't throw any exceptions as long as you covered all the possibilities.
(You could rewrite it to return a Maybe, for example.)
The syntax
mainFunction (viewFunction -> pattern) = resultExpression
is syntactic sugar for
mainFunction x = case viewFunction x of pattern -> resultExpression
so you can see it actually just reverses the list then pattern matches that, but it feels nicer.
viewFunction is just any function you like.
(One of the aims of the extension was to allow people to cleanly and easily use accessor functions
for pattern matching so they didn't have to use the underlying structure of their data type when
defining functions on it.)
The other answers explain the ViewPatterns-based solutions. If you want to make it more pattern matching-like, you can package that into a PatternSynonym:
tailLast :: [a] -> Maybe ([a], a)
tailLast xs#(_:_) = Just (init xs, last xs)
tailLast _ = Nothing
pattern Split x1 xs xn = x1 : (tailLast -> Just (xs, xn))
and then write your function as e.g.
foo :: [a] -> (a, [a], a)
foo (Split head mid last) = (head, mid, last)
foo _ = error "foo: empty list"
This is my first day of Haskell programming and I also encountered the same issue, but I could not resolve to use some kind of external artifact as suggested in previous solutions.
My feeling about Haskell is that if the core language has no solution for your problem, then the solution is to transform your problem until it works for the language.
In this case transforming the problem means transforming a tail problem into a head problem, which seems the only supported operation in pattern matching. It turns that you can easily do that using a list inversion, then work on the reversed list using head elements as you would use tail elements in the original list, and finally, if necessary, revert the result back to initial order (eg. if it was a list).
For example, given a list of integers (eg. [1,2,3,4,5,6]), assume we want to build this list in which every second element of the original list starting from the end is replaced by its double (exercise taken from Homework1 of this excellent introduction to Haskell) : [2,2,6,4,10,6].
Then we can use the following:
revert :: [Integer] -> [Integer]
revert [] = []
revert (x:[]) = [x]
revert (x:xs) = (revert xs) ++ [x]
doubleSecond :: [Integer] -> [Integer]
doubleSecond [] = []
doubleSecond (x:[]) = [x]
doubleSecond (x:y:xs) = (x:2*y : (doubleSecond xs))
doubleBeforeLast :: [Integer] -> [Integer]
doubleBeforeLast l = ( revert (doubleSecond (revert l)) )
main = putStrLn (show (doubleBeforeLast [1,2,3,4,5,6,7,8,9]))
It's obviously much longer than previous solutions, but it feels more Haskell-ish to me.

Haskell: Minimum sum of list

So, I'm new here, and I would like to ask 2 questions about some code:
Duplicate each element in list by n times. For example, duplicate [1,2,3] should give [1,2,2,3,3,3]
duplicate1 xs = x*x ++ duplicate1 xs
What is wrong in here?
Take positive numbers from list and find the minimum positive subtraction. For example, [-2,-1,0,1,3] should give 1 because (1-0) is the lowest difference above 0.
For your first part, there are a few issues: you forgot the pattern in the first argument, you are trying to square the first element rather than replicate it, and there is no second case to end your recursion (it will crash). To help, here is a type signature:
replicate :: Int -> a -> [a]
For your second part, if it has been covered in your course, you could try a list comprehension to get all differences of the numbers, and then you can apply the minimum function. If you don't know list comprehensions, you can do something similar with concatMap.
Don't forget that you can check functions on http://www.haskell.org/hoogle/ (Hoogle) or similar search engines.
Tell me if you need a more thorough answer.
To your first question:
Use pattern matching. You can write something like duplicate (x:xs). This will deconstruct the first cell of the parameter list. If the list is empty, the next pattern is tried:
duplicate (x:xs) = ... -- list is not empty
duplicate [] = ... -- list is empty
the function replicate n x creates a list, that contains n items x. For instance replicate 3 'a' yields `['a','a','a'].
Use recursion. To understand, how recursion works, it is important to understand the concept of recursion first ;)
1)
dupe :: [Int] -> [Int]
dupe l = concat [replicate i i | i<-l]
Theres a few problems with yours, one being that you are squaring each term, not creating a new list. In addition, your pattern matching is off and you would create am infinite recursion. Note how you recurse on the exact same list as was input. I think you mean something along the lines of duplicate1 (x:xs) = (replicate x x) ++ duplicate1 xs and that would be fine, so long as you write a proper base case as well.
2)
This is pretty straight forward from your problem description, but probably not too efficient. First filters out negatives, thewn checks out all subtractions with non-negative results. Answer is the minumum of these
p2 l = let l2 = filter (\x -> x >= 0) l
in minimum [i-j | i<-l2, j<-l2, i >= j]
Problem here is that it will allow a number to be checkeed against itself, whichwiull lend to answers of always zero. Any ideas? I'd like to leave it to you, commenter has a point abou t spoon-feeding.
1) You can use the fact that list is a monad:
dup = (=<<) (\x -> replicate x x)
Or in do-notation:
dup xs = do x <- xs; replicate x x; return x
2) For getting only the positive numbers from a list, you can use filter:
filter (>= 0) [1,-1,0,-5,3]
-- [1,0,3]
To get all possible "pairings" you can use either monads or applicative functors:
import Control.Applicative
(,) <$> [1,2,3] <*> [1,2,3]
[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]
Of course instead of creating pairs you can generate directly differences when replacing (,) by (-). Now you need to filter again, discarding all zero or negative differences. Then you only need to find the minimum of the list, but I think you can guess the name of that function.
Here, this should do the trick:
dup [] = []
dup (x:xs) = (replicate x x) ++ (dup xs)
We define dup recursively: for empty list it is just an empty list, for a non empty list, it is a list in which the first x elements are equal to x (the head of the initial list), and the rest is the list generated by recursively applying the dup function. It is easy to prove the correctness of this solution by induction (do it as an exercise).
Now, lets analyze your initial solution:
duplicate1 xs = x*x ++ duplicate1 xs
The first mistake: you did not define the list pattern properly. According to your definition, the function has just one argument - xs. To achieve the desired effect, you should use the correct pattern for matching the list's head and tail (x:xs, see my previous example). Read up on pattern matching.
But that's not all. Second mistake: x*x is actually x squared, not a list of two values. Which brings us to the third mistake: ++ expects both of its operands to be lists of values of the same type. While in your code, you're trying to apply ++ to two values of types Int and [Int].
As for the second task, the solution has already been given.
HTH

When destructuring tuples in Haskell, where can the elements be used?

I am reading a tutorial that uses the following example (that I'll generalize somewhat):
f :: Foo -> (Int, Foo)
...
fList :: Foo -> [Int]
fList foo = x : fList bar
where
(x, bar) = f foo
My question lies in the fact that it seems you can refer to x and bar, by name, outside of the tuple where they are obtained. This would seem to act like destructuring parameter lists in other languages, if my guess is correct. (In other words, I didn't have to do the following:)
fList foo = (fst tuple) : fList (snd tuple)
where
tuple = f foo
Am I right about this behavior? I've never seen it mentioned yet in the tutorials/books I've been reading. Can someone point me to more info on the subject?
Edit: Can anything (lists, arrays, etc.) be destructured in a similar way, or can you only do this with tuples?
Seeing your edit, I think what your asking about is Pattern matching.
And to answer your question: Yes, anything you can construct, you can also 'deconstruct' using the constructors. For example, you're probably familiar with this form of pattern matching:
head :: [a] -> a
head (x:xs) = x
head [] = error "Can't take head of empty list"
However, there are more places where you can use pattern matching, other valid notations are:
head xs = case xs of
(y:ys) -> y
[] -> error "Can't take head of empty list"
head xs = let (y:ys) = xs
in y
head xs = y
where
(y:ys) = xs
Note that the last two examples are a bit different from the first to because they give different error messages when you call them with an empty list.
Although these examples are specific to lists, you can do the same with other data types, like so:
first :: (a, b) -> a
first tuple = x
where
(x, y) = tuple
second :: (a, b) -> b
second tuple = let (x, y) = tuple
in y
fromJust :: Maybe a -> a
fromJust ma = x
where
(Just x) = ma
Again, the last function will also crash if you call it with Nothing.
To sum up; if you can create something using constructors (like (:) and [] for lists, or (,) for tuples, or Nothing and Just for Maybe), you can use those same constructors to do pattern matching in a variety of ways.
Am I right about this behavior?
Yes. The names exist only in the block where you have defined them, though. In your case, this means the logical unit that your where clause is applied to, i.e. the expression inside fList.
Another way to look at it is that code like this
x where x = 3
is roughly equivalent to
let x = 3 in x
Yes, you're right. Names bound in a where clause are visible to the full declaration preceding the where clause. In your case those names are f and bar.
(One of the hard things about learning Haskell is that it is not just permitted but common to use variables in the source code in locations that precede the locations where those variables are defined.)
The place to read more about where clauses is in the Haskell 98 Report or in one of the many fine tutorials to be found at haskell.org.

Resources