Decision path for Azure Service Fabric Programming Models - azure

Background
We are looking at porting a 'monolithic' 3 tier Web app to a microservices architecture. The web app displays listings to a consumer (think Craiglist).
The backend consists of a REST API that calls into a SQL DB and returns JSON for a SPA app to build a UI (there's also a mobile app). Data is written to the SQL DB via background services (ftp + worker roles). There's also some pages that allow writes by the user.
Information required:
I'm trying to figure out how (if at all), Azure Service Fabric would be a good fit for a microservices architecture in my scenario. I know the pros/cons of microservices vs monolith, but i'm trying to figure out the application of various microservice programming models to our current architecture.
Questions
Is Azure Service Fabric a good fit for this? If not, other recommendations? Currently i'm leaning towards a bunch of OWIN-based .NET web sites, split up by area/service, each hosted on their own machine and tied together by an API gateway.
Which Service Fabric programming model would i go for? Stateless services with their own backing DB? I can't see how Stateful or Actor model would help here.
If i went with Stateful services/Actor, how would i go about updating data as part of a maintenance/ad-hoc admin request? Traditionally we would simply login to the DB and update the data, and the API would return the new data - but if it's persisted in-memory/across nodes in a cluster, how would we update it? Would i have to expose this all via methods on the service? Similarly, how would I import my existing SQL data into a stateful service?
For Stateful services/actor model, how can I 'see' the data visually, with an object Explorer/UI. Our data is our Gold, and I'm concerned of the lack of control/visibility of it in the reliable services models
Basically, is there some documentation on the decision path towards which programming model to go for? I could model a "listing" as an Actor, and have millions of those - sure, but i could also have a Stateful service that stores the listing locally, and i could also have a Stateless service that fetches it from the DB. How does one decide as to which is the best approach, for a given use case?
Thanks.

What is it about your current setup that isn't meeting your requirements? What do you hope to gain from a more complex architecture?
Microservices aren't a magic bullet. You mainly get four benefits:
You can scale and distribute pieces of your overall system independently. Service Fabric has very sophisticated tools and advanced capabilities for this.
You can deploy and upgrade pieces of your overall system independently. Service Fabric again has advanced capabilities for this.
You can have a polyglot system - each service can be written in a different language/platform.
You can use conflicting dependencies - each service can have its own set of dependencies, like different framework versions.
All of this comes at a cost and introduces complexity and new ways your system can fail. For example: your fast, compile-time checked in-proc method calls now become slow (by comparison to an in-proc function call) failure-prone network calls. And these are not specific to Service Fabric, btw, this is just what happens you go from in-proc method calls to cross-machine I/O - doesn't matter what platform you use. The decision path here is a pro/con list specific to your application and your requirements.
To answer your Service Fabric questions specifically:
Which programming model do you go for? Start with stateless services with ASP.NET Core. It's going to be the simplest translation of your current architecture that doesn't require mucking around with your data layer.
Stateful has a lot of great uses, but it's not necessarily a replacement for your RDBMS. A good place to start is hot data that can be stored in simple key-value pairs, is accessed frequently and needs to be low-latency (you get local reads!), and doesn't need to be datamined. Some examples include user session state, cache data, a "snapshot" of the most recent items in a data stream (like the most recent stock quote in a stream of stock quotes).
Currently the only way to see or query your data is programmatically directly against the Reliable Collection APIs. There is no viewer or "management studio" tool. You have to write (and secure) an API in each service that can display and query data.
Finally, the actor model is a very niche model. It serves specific purposes but if you just treat it as a data store it will not work for you. Like in your example, a listing per actor probably wouldn't work because you can't query across that list, or even have multiple users reading the same listing simultaneously.

Related

Questions pertaining to micro-service architecture

I have a couple of questions that exist around micro service architecture, for example take the following services:
orders,
account,
communication &
management
Question 1: From what I read I understand that each service is suppose to have ownership of the data pertaining to that service, so orders would have an orders database. How important is that data ownership? Would micro-services make sense if they all called from one traditional database such that all data pertaining to the services would exist in one database? If so, are there an implications of structuring the services this way.
Question 2: Services should be able to communicate with one and other. How would that statement be any different than simply curling an existing API? & basing the logic on that response? Is calling a service more efficient than simply curling the API?
Question 3: Is it worth it? Now I understand this is a massive generality , and it's fundamentally predicated on the needs of the business. But when that discussion has been had, was the re-build worth it? & what challenges can you expect to face
I will try to answer all the questions.
Respect to all services using the same database. If you do so you have two main problems. First the database would become a bottleneck because all requests will go to the same point. And second you will have coupled all your services, so if the database goes down or it needs to update, all your services will be affected. (The database will became a single point of failure)
The communication between services could be whatever your services need (syncrhonous, asynchronous, via message passing (message broker), etc..) it all depends on the use cases you have to support. The recommended way to do to avoid temporal decoupling is to use a message broker like kafka, doing this your services don't have to known each other and in case some of them go down the others will still working. And when they are up again, they can continue to process the messages that have pending. However, if your services need to respond in synchronous way, you can define synchronous communication between services and use a circuit breaker to behave properly in case the callee service is down.
Microservices architecture is far more complicated to make it work, to monitoring and to debug than a traditional monolith architecture so, it is only worth if you will have very large requirements of scalability and availability and/or if the system is very large and it will require several teams working in different parts of the system and it is recommendable to avoid dependencies among them. So each team can work at their own pace deploying their own services

Should I be moving to a microservices based architecture?

I am working on a monolith system. All of it's code is in one repository (Web API and background workers). System is written in Nodejs and MongoDB (Mongoose) is used as a data store. My goal is to set a new path how project should evolve. At first I was wondering if I could move towards microservices based architecture.
Monolith architecture creates some problems:
If my background workers needs to scale. I have to deploy all the project to the server despite only using a small fraction of it.
All system must be redeployed when code changes. What if payment processor calls webhook while system is being redeployed?
Using microsevices advantages are quite obvious:
Smaller code base for individual microservice. Easier to reason about it.
Ability to select programming tools best for particular use case.
Easier to scale.
Looking at the current code I noticed that Mongoose ODM (Object Document Mapper) models are used across all the project to create, query and update models in database. As a principle of a good programming all such interactions with database should be abstracted. Business logic should not leak into other system layers. I could do that by introducing REPOSITORY pattern (Domain Driven Design). While code is still being shared across web api and it's background workers it is not a hard task to do.
If i decide to extract repositories into standalone microservices than all bunch of problems arise:
Some sort of query language must be introduced to accommodate complex search queries.
Interface must provide a way to iterate over search results (cursor based navigation) without returning all database documents over network.
Since project is in it's early stage and I am the only developer, going to microservices based architecture seems like an overkill. Maybe there are other approaches I should consider?
Extracting business logic and interaction with database into separate repository and sharing among services to avoid complex communication protocols between services?
Based on my experience with working in Microservices for last few years, it seems like an overkill in current scenario but pays off in long-term.
Based on the information stated above, my thoughts are:
Code Structure - Microservices Architecture (MSA) applying in above context means not separating DAO, Business Logic etc. rather is more on the designing system as per business functions. For example, if it is an eCommerce application, then you can shipping, cart, search as separate services, which can further be divided into smaller services. Read it more about domain-driven design here.
Deployment Unit - Keeping microservices apps as an independent deployment unit is a key principle. Hence, keep a vertical slice of the application and package them as Docker Image with Application Code, App Server (if any), Database and OS (Linux etc.)
Communication - With MSA, communication between services become a key and hence general practice is to remain with the message-oriented approach for communication (read about the reactive system and reactive programming for more insight).
PaaS Solution - There are multiple PaaS solutions available, which you can apply so that you don't need to worry about all the other aspects like container management, container orchestration, auto-scaling, configuration management, log management and monitoring etc. See following PaaS solutions:
https://www.nanoscale.io/ by TIBCO
https://fabric8.io/ - by RedHat
https://openshift.io - by RedHat
Cloud Vendor Platforms - AWS, Azure & Google Cloud all of them have specific support for Microservices App from the deployment perspective, which we can use as an alternative solution if you don't want to deploy PaaS solution in your organization.
Hope these pointers will have in understanding the overall landscape so that you can structure your architecture for future need.
I am working on a monolith system... My goal is to set a new path how project should evolve. At first I was wondering if I could move towards microservices based architecture.
In what ways do you need to evolve the project? Will it be mostly bugfixes, adding features, improving performance and/or scalability? Do you anticipate other developers collaborating in the future? Are you currently having maintenance issues? The answers to these questions (and many more) should be considered in guiding your choices.
You seem to be doing your homework around the pros and cons of a microservice architecture, so if you haven't asked yourself why you're even doing this in the first place, now would be good time to do so.
Maybe there are other approaches I should consider?
There's always the good old don't-break-what's-going ;)

JHipster microservices entities

I read the BFF pattern and I have a doubt, if one microservice is only for iOS and other microservice is only for Android, how must be created the entities if that two services use the same database and the same tables?
I'm trying to use the JDL-Studio and importing the model with import-idl command but I don't know if the command must run in every micro service's workspace
Edit:
For more context, I want to build a full stack application that could have a lot of concurrency from a web page, iOS and Android applications with REST calls and I don't know if correct to repeat the entities in every microservices (to have separated the API for every plataform) or add just one microservices as database layer.
Edit 2:
I found this blog talking about create jhipster applications with microservices and this guy show how the gateway have they own entities and the microservices have they own too..
now, I have more clear the real base of the microservices architecture but what if I want a microservice with the all entities and the gateway with only the UI entities? the blog show how could be this but with just one entity and I have a full model.jhl with the all entities
I wouldn't use import-idl for any of them apart from the original master back-end API application. You don't want a full back-end stack for each BFF, otherwise you'll have to maintain several applications much of what do the same thing and plus you'll need to synchronize your data between these data sources into some sort of "master". If you repoint everything to a single database and share all entities between BFF components, then it doesn't fit the microservice model.
The BFF pattern is supposed to be a thin facade in front of an existing service API that filters and perhaps calls multiple service APIs when necessary to aggregate stuff to suit each client type. I see this pattern more of a convenience band-aid when you have no control over the existing API, or a (temporary) step in incremental service decomposition. Ideally microservices should not have such synchronous dependencies, and I'm not a huge fan of horizontal decomposition.
In my opinion there are better ways of implementing "BFF" functionality if developing from scratch without the complicated architecture and added latency of adding yet another layer of indirection. Microservice architecture is often compared to UNIX commands. The same UNIX command is capable of supplying more detailed information when desired to suit different needs. Compare the output of ls with ls -l for example. Such a strategy can be applied to single microservice endpoints as well.

What does building an application in Arango Foxx offer beyond a regular node application

I'm learning more about ArangoDB and it's Foxx framework. But it's not clear to me what I gain by using that framework over building my own stand alone nodejs app for API/access control, logic, etc.
What does Foxx offer that a regular nodejs app wouldn't?
Full disclosure: I'm an ArangoDB core maintainer and part of the Foxx team.
I would recommend taking a look at the webinar I gave last year for a detailed overview of the differences between Foxx and Node and the advantages of using Foxx when you are using ArangoDB. I'll try to give a quick summary here.
If you apply ideas like the Single Responsibility Principle to your architecture, your server-side code has two responsibilities:
Backend: persist and query data using the backend data storage (i.e. ArangoDB or other databases).
Frontend: transform the query results into a format acceptable for the client (e.g. HTML, JSON, XML, CSV, etc).
In most conventional applications, these two responsibilities are fulfilled by the same monolithic application code base running in the same process.
However the task of interacting with the data storage usually requires writing a lot of code that is specific to the database technology. You need to write queries (e.g. using SQL, AQL, ReQL or any other technology-specific language) or use database-specific drivers.
Additionally in many non-trivial applications you need to interact with things like stored procedures which are also part of the "backend code" but live in the database. So in addition to having the application server do two different tasks (storage and rendering), half the code for one of the tasks ends up living somewhere else, often using an entirely different language.
Foxx lets you solve this problem by allowing you to move the logic we identified as the "backend" of your server-side code into ArangoDB. Not only can you hide all the nitty gritty of query languages, edges and collections behind a more application-specific API, you also eliminate the network overhead often necessary to handle requests that would cause more than a single roundtrip to the database.
For trivial applications this may mean that you can eliminate the Node server completely and access your Foxx API directly from the client. For more complicated scenarios you may want to use Node to build external micro services your Foxx service can tap into (e.g. to interface with external non-HTTP APIs). Or you just put your conventional Node app in front of ArangoDB and use Foxx to create an HTTP API that better represents your application's problem domain than the database's raw HTTP API.
It's also worth keeping in mind that structurally Foxx services aren't entirely dissimilar from Node applications. You can use NPM dependencies and split your code up into modules and it can all live in version control and be deployed from zip bundles. If you're not convinced I'd suggest giving it a try by implementing a few of your most frequent queries as Foxx endpoints and then deciding whether you want to move more of your logic over or not.

Separation of concerns in Node.js app and dealing with load across different processes

I have a Node application which persists data to a MongoDB database. Most of this data is in hand, such as data for the User collection. However, the application also has the concept of Website collection, and for this collection, data must first be downloaded from somewhere before it is saved.
I am wondering how I should separate the above concerns in my application. At the service layer, I have things like User and Website. They provide basic CRUD operations. At completely the opposite end of the spectrum, there is a user interface whereby uses can input a website URL. Somewhere between this UI and the application persisting the data to MongoDB (the service layer), the application must make a request to this URL to gather some data. Once the data has been fetched, the Website service will persist it.
Potentially, there could be thousands of these URLs entered at once, and I do not want to bring down the Node process that handles the web server due to load issues. Therefore I think it would be a good idea to abstract the work out to a different process and use some sort of messaging bus to tie the application together.
It seems that you've decomposed system correctly -and have created that separation at the persistence "service" layer-, but I'd take this separation a bit further by moving toward a distributed system architecture (i.e. SOA / micro-services).
The initial step of building a distributed system is identifying each of the functions necessary to meet the overall business goal of the application and mapping these to service endpoints. Each loosely coupled service endpoint will then serve a small isolated job/function and it will act as an abstraction for that business goal.
By continuing the separation of responsibilities all the way to the service endpoint you create small independent boundaries for scalability, throughput, fault tolerance, security, deployment, etc.
For example -RESTfully speaking-, this might mean service endpoints for both Users (e.g. /users/{userid}) and Websites (e.g. /websites/{websiteid|url})... and perhaps an additional Resource to maintain the relationship/link between the two (e.g. /users/{userid}/userwebsites : {websiteid:1234,url:blah.com).
This separation would mean you can handle the website processing responsibility independently, which would have a number of benefits -beyond just handling the different load characteristics-.

Resources