How to write a mtl-like framework that is sensitive to monad composition order? - haskell

mtl doesn't care that much about the order of the monads in the monad stack, as long as there is a viable implementation. For example:
foo :: (MonadError () m, MonadState Int m) => m ()
foo = (put 1 >> throwError ()) `catchError` return
main :: IO ()
main = do
print $ runExcept $ flip execStateT 0 $ foo -- returns Right 0
print $ flip execState 0 $ runExceptT $ foo -- returns 1
Suppose I wanted to create a mini-mtl framework (for the sake of simplicity, one which covered only ExceptT and StateT) that was sensitive to the order of composition, and let me express things like
this function requires an error effect with priority over the
state effect, but I'm letting you choose the exact error and state
implementations.
or
this function requires a state effect with priority over the
error effect, but I'm letting you choose the exact error and state
implementations.
in such a way that only the stacks with the correct order had the required instances.
I don't know how to embed effect priority in the typeclass constraints. Would I need some kind of "constraint transformer" of kind Constraint -> Constraint? Perhaps some constraint parameterized by a type-level list of constraints?

Related

How to understand `MonadUnliftIO`'s requirement of "no stateful monads"?

I've looked over https://www.fpcomplete.com/blog/2017/06/tale-of-two-brackets, though skimming some parts, and I still don't quite understand the core issue "StateT is bad, IO is OK", other than vaguely getting the sense that Haskell allows one to write bad StateT monads (or in the ultimate example in the article, MonadBaseControl instead of StateT, I think).
In the haddocks, the following law must be satisfied:
askUnliftIO >>= (\u -> liftIO (unliftIO u m)) = m
So this appears to be saying that state is not mutated in the monad m when using askUnliftIO. But to my mind, in IO, the entire world can be the state. I could be reading and writing to a text file on disk, for instance.
To quote another article by Michael,
False purity We say WriterT and StateT are pure, and technically they
are. But let's be honest: if you have an application which is entirely
living within a StateT, you're not getting the benefits of restrained
mutation that you want from pure code. May as well call a spade a
spade, and accept that you have a mutable variable.
This makes me think this is indeed the case: with IO we are being honest, with StateT, we are not being honest about mutability ... but that seems another issue than what the law above is trying to show; after all, MonadUnliftIO is assuming IO. I'm having trouble understanding conceptually how IO is more restrictive than something else.
Update 1
After sleeping (some), I am still confused but am gradually getting less so as the day wears on. I worked out the law proof for IO. I realized the presence of id in the README. In particular,
instance MonadUnliftIO IO where
askUnliftIO = return (UnliftIO id)
So askUnliftIO would appear to return an IO (IO a) on an UnliftIO m.
Prelude> fooIO = print 5
Prelude> :t fooIO
fooIO :: IO ()
Prelude> let barIO :: IO(IO ()); barIO = return fooIO
Prelude> :t barIO
barIO :: IO (IO ())
Back to the law, it really appears to be saying that state is not mutated in the monad m when doing a round trip on the transformed monad (askUnliftIO), where the round trip is unLiftIO -> liftIO.
Resuming the example above, barIO :: IO (), so if we do barIO >>= (u -> liftIO (unliftIO u m)), then u :: IO () and unliftIO u == IO (), then liftIO (IO ()) == IO (). **So since everything has basically been applications of id under the hood, we can see that no state was changed, even though we are using IO. Crucially, I think, what is important is that the value in a is never run, nor is any other state modified, as a result of using askUnliftIO. If it did, then like in the case of randomIO :: IO a, we would not be able to get the same value had we not run askUnliftIO on it. (Verification attempt 1 below)
But, it still seems like we could do the same for other Monads, even if they do maintain state. But I also see how, for some monads, we may not be able to do so. Thinking of a contrived example: each time we access the value of type a contained in the stateful monad, some internal state is changed.
Verification attempt 1
> fooIO >> askUnliftIO
5
> fooIOunlift = fooIO >> askUnliftIO
> :t fooIOunlift
fooIOunlift :: IO (UnliftIO IO)
> fooIOunlift
5
Good so far, but confused about why the following occurs:
> fooIOunlift >>= (\u -> unliftIO u)
<interactive>:50:24: error:
* Couldn't match expected type `IO b'
with actual type `IO a0 -> IO a0'
* Probable cause: `unliftIO' is applied to too few arguments
In the expression: unliftIO u
In the second argument of `(>>=)', namely `(\ u -> unliftIO u)'
In the expression: fooIOunlift >>= (\ u -> unliftIO u)
* Relevant bindings include
it :: IO b (bound at <interactive>:50:1)
"StateT is bad, IO is OK"
That's not really the point of the article. The idea is that MonadBaseControl permits some confusing (and often undesirable) behaviors with stateful monad transformers in the presence of concurrency and exceptions.
finally :: StateT s IO a -> StateT s IO a -> StateT s IO a is a great example. If you use the "StateT is attaching a mutable variable of type s onto a monad m" metaphor, then you might expect that the finalizer action gets access to the most recent s value when an exception was thrown.
forkState :: StateT s IO a -> StateT s IO ThreadId is another one. You might expect that the state modifications from the input would be reflected in the original thread.
lol :: StateT Int IO [ThreadId]
lol = do
for [1..10] $ \i -> do
forkState $ modify (+i)
You might expect that lol could be rewritten (modulo performance) as modify (+ sum [1..10]). But that's not right. The implementation of forkState just passes the initial state to the forked thread, and then can never retrieve any state modifications. The easy/common understanding of StateT fails you here.
Instead, you have to adopt a more nuanced view of StateT s m a as "a transformer that provides a thread-local immutable variable of type s which is implicitly threaded through a computation, and it is possible to replace that local variable with a new value of the same type for future steps of the computation." (more or less a verbose english retelling of the s -> m (a, s)) With this understanding, the behavior of finally becomes a bit more clear: it's a local variable, so it does not survive exceptions. Likewise, forkState becomes more clear: it's a thread-local variable, so obviously a change to a different thread won't affect any others.
This is sometimes what you want. But it's usually not how people write code IRL and it often confuses people.
For a long time, the default choice in the ecosystem to do this "lowering" operation was MonadBaseControl, and this had a bunch of downsides: hella confusing types, difficult to implement instances, impossible to derive instances, sometimes confusing behavior. Not a great situation.
MonadUnliftIO restricts things to a simpler set of monad transformers, and is able to provide relatively simple types, derivable instances, and always predictable behavior. The cost is that ExceptT, StateT, etc transformers can't use it.
The underlying principle is: by restricting what is possible, we make it easier to understand what might happen. MonadBaseControl is extremely powerful and general, and quite difficult to use and confusing as a result. MonadUnliftIO is less powerful and general, but it's much easier to use.
So this appears to be saying that state is not mutated in the monad m when using askUnliftIO.
This isn't true - the law is stating that unliftIO shouldn't do anything with the monad transformer aside from lowering it into IO. Here's something that breaks that law:
newtype WithInt a = WithInt (ReaderT Int IO a)
deriving newtype (Functor, Applicative, Monad, MonadIO, MonadReader Int)
instance MonadUnliftIO WithInt where
askUnliftIO = pure (UnliftIO (\(WithInt readerAction) -> runReaderT 0 readerAction))
Let's verify that this breaks the law given: askUnliftIO >>= (\u -> liftIO (unliftIO u m)) = m.
test :: WithInt Int
test = do
int <- ask
print int
pure int
checkLaw :: WithInt ()
checkLaw = do
first <- test
second <- askUnliftIO >>= (\u -> liftIO (unliftIO u test))
when (first /= second) $
putStrLn "Law violation!!!"
The value returned by test and the askUnliftIO ... lowering/lifting are different, so the law is broken. Furthermore, the observed effects are different, which isn't great either.

What is the logic behind allowing only same Monad types to be concatenated with `>>` operator?

Though it is okay to bind IO [[Char]] and IO () but its not allowed to bind Maybe with IO. Can someone give an example how this relaxation would lead to a bad design? Why freedom in the polymorphic type of Monad is allowed though not the Monad itself?
There are a lot of good theoretical reasons, including "that's not what Monad is." But let's step away from that for a moment and just look at the implementation details.
First off - Monad isn't magic. It's just a standard type class. Instances of Monad only get created when someone writes one.
Writing that instance is what defines how (>>) works. Usually it's done implicitly through the default definition in terms of (>>=), but that just is evidence that (>>=) is the more general operator, and writing it requires making all the same decisions that writing (>>) would take.
If you had a different operator that worked on more general types, you have to answer two questions. First, what would the types be? Second, how would you go about providing implementations? It's really not clear what the desired types would be, from your question. One of the following, I guess:
class Poly1 m n where
(>>) :: m a -> n b -> m b
class Poly2 m n where
(>>) :: m a -> n b -> n b
class Poly3 m n o | m n -> o where
(>>) :: m a -> n b -> o b
All of them could be implemented. But you lose two really important factors for using them practically.
You need to write an instance for every pair of types you plan to use together. This is a massively more complex undertaking than just an instance for each type. Something about n vs n^2.
You lose predictability. What does the operation even do? Here's where theory and practice intersect. The theory behind Monad places a lot of restrictions on the operations. Those restrictions are referred to as the "monad laws". They are beyond the ability to verify in Haskell, but any Monad instance that doesn't obey them is considered to be buggy. The end result is that you quickly can build an intuition for what the Monad operations do and don't do. You can use them without looking up the details of every type involved, because you know properties that they obey. None of those possible classes I suggested give you any kind of assurances like that. You just have no idea what they do.
I’m not sure that I understand your question correctly, but it’s definitely possible to compose Maybe with IO or [] in the same sense that you can compose IO with [].
For example, if you check the types in GHCI using :t,
getContents >>= return . lines
gives you an IO [String]. If you add
>>= return . map Text.Read.readMaybe
you get a type of IO [Maybe a], which is a composition of IO, [] and Maybe. You could then pass it to
>>= return . Data.Maybe.catMaybes
to flatten it to an IO [a]. Then you might pass the list of parsed valid input lines to a function that flattens it again and computes an output.
Putting this together, the program
import Text.Read (readMaybe)
import Data.Maybe (catMaybes)
main :: IO ()
main = getContents >>= -- IO String
return . lines >>= -- IO [String]
return . map readMaybe >>= -- IO [Maybe Int]
return . catMaybes >>= -- IO [Int]
return . (sum :: [Int] -> Int) >>= -- IO Int
print -- IO ()
with the input:
1
2
Ignore this!
3
prints 6.
It would also be possible to work with an IO (Maybe [String]), a Maybe [IO String], etc.
You can do this with >> as well. Contrived example: getContents >> (return . Just) False reads the input, ignores it, and gives you back an IO (Maybe Bool).

How to print the result of a State Monad in Haskell?

Is it possible to print the result of a state monad in Haskell?
I'm trying to understand state monads and in a book I have been following supplies the code below for creating a state monad, but I am struggling with this topic as I am unable to view the process visually i.e. see the end result.
newtype State s a = State { runState :: s -> (a,s)}
instance Monad (State s) where
return x = State $ \s -> (x,s)
(State h) >>= f = State $ \s -> let (a, newState) = h s
(State g) = f a
in g newState
It is generally not possible to print functions in a meaningful way. If the domain of the function is small, you can import Data.Universe.Instances.Show from the universe-reverse-instances package to get a Show instance that prints a lookup table that is semantically equivalent to the function. With that module imported, you could simply add deriving Show to your newtype declaration to be able to print State actions over small state spaces.
The code you've supplied defines the kind of thing State s a is. And it also says that State s is a monad - that is, the kind of thing State s is conforms to the Monad typeclass/interface. This means you can bind one State s computation to another (as long as the type s is the same in each).
So your situation is analogous to that of someone who has defined the kind of thing that a Map is, and has also written code that says a Map conforms to such and such interfaces, but who doesn't have any maps, and hasn't yet run any computation with them. There's nothing to print then.
I take it you want to see the result of evaluating or executing your state actions, but you have not defined any actual state actions yet, nor have you called runState (or evalState or execState) on them. Don't forget you also need to supply an initial state to run the computation.
So maybe start by letting s and a be some particular types. E.g. let s be Int and let a be Int. Now you could go write some fns, e.g. f :: Int -> (Int, Int), and g :: Int -> (Int, Int). Maybe one function decrements the state, returning the new state and value, and another function increments the state, returning the new state and value. Then you could make a State Int Int out of f by wrapping it in the State constructor. And you could use >>= to chain as many state actions together as you like. Finally, you can use runState on this, to get the resulting value and resulting state, as long as you also supply an initial state (e.g. 0).
If it's just the result you want, and if you're just debugging:
import Debug.Trace
import Control.Monad.Trans.State
action :: State [Int] ()
action = do
put [0]
modify (1:)
modify (2:)
get >>= traceShowM
modify (3:)
modify (4:)
get >>= traceShowM

Why monads? How does it resolve side-effects?

I am learning Haskell and trying to understand Monads. I have two questions:
From what I understand, Monad is just another typeclass that declares ways to interact with data inside "containers", including Maybe, List, and IO. It seems clever and clean to implement these 3 things with one concept, but really, the point is so there can be clean error handling in a chain of functions, containers, and side effects. Is this a correct interpretation?
How exactly is the problem of side-effects solved? With this concept of containers, the language essentially says anything inside the containers is non-deterministic (such as i/o). Because lists and IOs are both containers, lists are equivalence-classed with IO, even though values inside lists seem pretty deterministic to me. So what is deterministic and what has side-effects? I can't wrap my head around the idea that a basic value is deterministic, until you stick it in a container (which is no special than the same value with some other values next to it, e.g. Nothing) and it can now be random.
Can someone explain how, intuitively, Haskell gets away with changing state with inputs and output? I'm not seeing the magic here.
The point is so there can be clean error handling in a chain of functions, containers, and side effects. Is this a correct interpretation?
Not really. You've mentioned a lot of concepts that people cite when trying to explain monads, including side effects, error handling and non-determinism, but it sounds like you've gotten the incorrect sense that all of these concepts apply to all monads. But there's one concept you mentioned that does: chaining.
There are two different flavors of this, so I'll explain it two different ways: one without side effects, and one with side effects.
No Side Effects:
Take the following example:
addM :: (Monad m, Num a) => m a -> m a -> m a
addM ma mb = do
a <- ma
b <- mb
return (a + b)
This function adds two numbers, with the twist that they are wrapped in some monad. Which monad? Doesn't matter! In all cases, that special do syntax de-sugars to the following:
addM ma mb =
ma >>= \a ->
mb >>= \b ->
return (a + b)
... or, with operator precedence made explicit:
ma >>= (\a -> mb >>= (\b -> return (a + b)))
Now you can really see that this is a chain of little functions, all composed together, and its behavior will depend on how >>= and return are defined for each monad. If you're familiar with polymorphism in object-oriented languages, this is essentially the same thing: one common interface with multiple implementations. It's slightly more mind-bending than your average OOP interface, since the interface represents a computation policy rather than, say, an animal or a shape or something.
Okay, let's see some examples of how addM behaves across different monads. The Identity monad is a decent place to start, since its definition is trivial:
instance Monad Identity where
return a = Identity a -- create an Identity value
(Identity a) >>= f = f a -- apply f to a
So what happens when we say:
addM (Identity 1) (Identity 2)
Expanding this, step by step:
(Identity 1) >>= (\a -> (Identity 2) >>= (\b -> return (a + b)))
(\a -> (Identity 2) >>= (\b -> return (a + b)) 1
(Identity 2) >>= (\b -> return (1 + b))
(\b -> return (1 + b)) 2
return (1 + 2)
Identity 3
Great. Now, since you mentioned clean error handling, let's look at the Maybe monad. Its definition is only slightly trickier than Identity:
instance Monad Maybe where
return a = Just a -- same as Identity monad!
(Just a) >>= f = f a -- same as Identity monad again!
Nothing >>= _ = Nothing -- the only real difference from Identity
So you can imagine that if we say addM (Just 1) (Just 2) we'll get Just 3. But for grins, let's expand addM Nothing (Just 1) instead:
Nothing >>= (\a -> (Just 1) >>= (\b -> return (a + b)))
Nothing
Or the other way around, addM (Just 1) Nothing:
(Just 1) >>= (\a -> Nothing >>= (\b -> return (a + b)))
(\a -> Nothing >>= (\b -> return (a + b)) 1
Nothing >>= (\b -> return (1 + b))
Nothing
So the Maybe monad's definition of >>= was tweaked to account for failure. When a function is applied to a Maybe value using >>=, you get what you'd expect.
Okay, so you mentioned non-determinism. Yes, the list monad can be thought of as modeling non-determinism in a sense... It's a little weird, but think of the list as representing alternative possible values: [1, 2, 3] is not a collection, it's a single non-deterministic number that could be either one, two or three. That sounds dumb, but it starts to make some sense when you think about how >>= is defined for lists: it applies the given function to each possible value. So addM [1, 2] [3, 4] is actually going to compute all possible sums of those two non-deterministic values: [4, 5, 5, 6].
Okay, now to address your second question...
Side Effects:
Let's say you apply addM to two values in the IO monad, like:
addM (return 1 :: IO Int) (return 2 :: IO Int)
You don't get anything special, just 3 in the IO monad. addM does not read or write any mutable state, so it's kind of no fun. Same goes for the State or ST monads. No fun. So let's use a different function:
fireTheMissiles :: IO Int -- returns the number of casualties
Clearly the world will be different each time missiles are fired. Clearly. Now let's say you're trying to write some totally innocuous, side effect free, non-missile-firing code. Perhaps you're trying once again to add two numbers, but this time without any monads flying around:
add :: Num a => a -> a -> a
add a b = a + b
and all of a sudden your hand slips, and you accidentally typo:
add a b = a + b + fireTheMissiles
An honest mistake, really. The keys were so close together. Fortunately, because fireTheMissiles was of type IO Int rather than simply Int, the compiler is able to avert disaster.
Okay, totally contrived example, but the point is that in the case of IO, ST and friends, the type system keeps effects isolated to some specific context. It doesn't magically eliminate side effects, making code referentially transparent that shouldn't be, but it does make it clear at compile time what scope the effects are limited to.
So getting back to the original point: what does this have to do with chaining or composition of functions? Well, in this case, it's just a handy way of expressing a sequence of effects:
fireTheMissilesTwice :: IO ()
fireTheMissilesTwice = do
a <- fireTheMissiles
print a
b <- fireTheMissiles
print b
Summary:
A monad represents some policy for chaining computations. Identity's policy is pure function composition, Maybe's policy is function composition with failure propogation, IO's policy is impure function composition and so on.
Let me start by pointing at the excellent "You could have invented monads" article. It illustrates how the Monad structure can naturally manifest while you are writing programs. But the tutorial doesn't mention IO, so I will have a stab here at extending the approach.
Let us start with what you probably have already seen - the container monad. Let's say we have:
f, g :: Int -> [Int]
One way of looking at this is that it gives us a number of possible outputs for every possible input. What if we want all possible outputs for the composition of both functions? Giving all possibilities we could get by applying the functions one after the other?
Well, there's a function for that:
fg x = concatMap g $ f x
If we put this more general, we get
fg x = f x >>= g
xs >>= f = concatMap f xs
return x = [x]
Why would we want to wrap it like this? Well, writing our programs primarily using >>= and return gives us some nice properties - for example, we can be sure that it's relatively hard to "forget" solutions. We'd explicitly have to reintroduce it, say by adding another function skip. And also we now have a monad and can use all combinators from the monad library!
Now, let us jump to your trickier example. Let's say the two functions are "side-effecting". That's not non-deterministic, it just means that in theory the whole world is both their input (as it can influence them) as well as their output (as the function can influence it). So we get something like:
f, g :: Int -> RealWorld# -> (Int, RealWorld#)
If we now want f to get the world that g left behind, we'd write:
fg x rw = let (y, rw') = f x rw
(r, rw'') = g y rw'
in (r, rw'')
Or generalized:
fg x = f x >>= g
x >>= f = \rw -> let (y, rw') = x rw
(r, rw'') = f y rw'
in (r, rw'')
return x = \rw -> (x, rw)
Now if the user can only use >>=, return and a few pre-defined IO values we get a nice property again: The user will never actually see the RealWorld# getting passed around! And that is a very good thing, as you aren't really interested in the details of where getLine gets its data from. And again we get all the nice high-level functions from the monad libraries.
So the important things to take away:
The monad captures common patterns in your code, like "always pass all elements of container A to container B" or "pass this real-world-tag through". Often, once you realize that there is a monad in your program, complicated things become simply applications of the right monad combinator.
The monad allows you to completely hide the implementation from the user. It is an excellent encapsulation mechanism, be it for your own internal state or for how IO manages to squeeze non-purity into a pure program in a relatively safe way.
Appendix
In case someone is still scratching his head over RealWorld# as much as I did when I started: There's obviously more magic going on after all the monad abstraction has been removed. Then the compiler will make use of the fact that there can only ever be one "real world". That's good news and bad news:
It follows that the compiler must guarantuee execution ordering between functions (which is what we were after!)
But it also means that actually passing the real world isn't necessary as there is only one we could possibly mean: The one that is current when the function gets executed!
Bottom line is that once execution order is fixed, RealWorld# simply gets optimized out. Therefore programs using the IO monad actually have zero runtime overhead. Also note that using RealWorld# is obviously only one possible way to put IO - but it happens to be the one GHC uses internally. The good thing about monads is that, again, the user really doesn't need to know.
You could see a given monad m as a set/family (or realm, domain, etc.) of actions (think of a C statement). The monad m defines the kind of (side-)effects that its actions may have:
with [] you can define actions which can fork their executions in different "independent parallel worlds";
with Either Foo you can define actions which can fail with errors of type Foo;
with IO you can define actions which can have side-effects on the "outside world" (access files, network, launch processes, do a HTTP GET ...);
you can have a monad whose effect is "randomness" (see package MonadRandom);
you can define a monad whose actions can make a move in a game (say chess, Go…) and receive move from an opponent but are not able to write to your filesystem or anything else.
Summary
If m is a monad, m a is an action which produces a result/output of type a.
The >> and >>= operators are used to create more complex actions out of simpler ones:
a >> b is a macro-action which does action a and then action b;
a >> a does action a and then action a again;
with >>= the second action can depend on the output of the first one.
The exact meaning of what an action is and what doing an action and then another one is depends on the monad: each monad defines an imperative sublanguage with some features/effects.
Simple sequencing (>>)
Let's say with have a given monad M and some actions incrementCounter, decrementCounter, readCounter:
instance M Monad where ...
-- Modify the counter and do not produce any result:
incrementCounter :: M ()
decrementCounter :: M ()
-- Get the current value of the counter
readCounter :: M Integer
Now we would like to do something interesting with those actions. The first thing we would like to do with those actions is to sequence them. As in say C, we would like to be able to do:
// This is C:
counter++;
counter++;
We define an "sequencing operator" >>. Using this operator we can write:
incrementCounter >> incrementCounter
What is the type of "incrementCounter >> incrementCounter"?
It is an action made of two smaller actions like in C you can write composed-statements from atomic statements :
// This is a macro statement made of several statements
{
counter++;
counter++;
}
// and we can use it anywhere we may use a statement:
if (condition) {
counter++;
counter++;
}
it can have the same kind of effects as its subactions;
it does not produce any output/result.
So we would like incrementCounter >> incrementCounter to be of type M (): an (macro-)action with the same kind of possible effects but without any output.
More generally, given two actions:
action1 :: M a
action2 :: M b
we define a a >> b as the macro-action which is obtained by doing (whatever that means in our domain of action) a then b and produces as output the result of the execution of the second action. The type of >> is:
(>>) :: M a -> M b -> M b
or more generally:
(>>) :: (Monad m) => m a -> m b -> m b
We can define bigger sequence of actions from simpler ones:
action1 >> action2 >> action3 >> action4
Input and outputs (>>=)
We would like to be able to increment by something else that 1 at a time:
incrementBy 5
We want to provide some input in our actions, in order to do this we define a function incrementBy taking an Int and producing an action:
incrementBy :: Int -> M ()
Now we can write things like:
incrementCounter >> readCounter >> incrementBy 5
But we have no way to feed the output of readCounter into incrementBy. In order to do this, a slightly more powerful version of our sequencing operator is needed. The >>= operator can feed the output of a given action as input to the next action. We can write:
readCounter >>= incrementBy
It is an action which executes the readCounter action, feeds its output in the incrementBy function and then execute the resulting action.
The type of >>= is:
(>>=) :: Monad m => m a -> (a -> m b) -> m b
A (partial) example
Let's say I have a Prompt monad which can only display informations (text) to the user and ask informations to the user:
-- We don't have access to the internal structure of the Prompt monad
module Prompt (Prompt(), echo, prompt) where
-- Opaque
data Prompt a = ...
instance Monad Prompt where ...
-- Display a line to the CLI:
echo :: String -> Prompt ()
-- Ask a question to the user:
prompt :: String -> Prompt String
Let's try to define a promptBoolean message actions which asks for a question and produces a boolean value.
We use the prompt (message ++ "[y/n]") action and feed its output to a function f:
f "y" should be an action which does nothing but produce True as output;
f "n" should be an action which does nothing but produce False as output;
anything else should restart the action (do the action again);
promptBoolean would look like this:
-- Incomplete version, some bits are missing:
promptBoolean :: String -> M Boolean
promptBoolean message = prompt (message ++ "[y/n]") >>= f
where f result = if result == "y"
then ???? -- We need here an action which does nothing but produce `True` as output
else if result=="n"
then ???? -- We need here an action which does nothing but produce `False` as output
else echo "Input not recognised, try again." >> promptBoolean
Producing a value without effect (return)
In order to fill the missing bits in our promptBoolean function, we need a way to represent dummy actions without any side effect but which only outputs a given value:
-- "return 5" is an action which does nothing but outputs 5
return :: (Monad m) => a -> m a
and we can now write out promptBoolean function:
promptBoolean :: String -> Prompt Boolean
promptBoolean message :: prompt (message ++ "[y/n]") >>= f
where f result = if result=="y"
then return True
else if result=="n"
then return False
else echo "Input not recognised, try again." >> promptBoolean message
By composing those two simple actions (promptBoolean, echo) we can define any kind of dialogue between the user and your program (the actions of the program are deterministic as our monad does not have a "randomness effect").
promptInt :: String -> M Int
promptInt = ... -- similar
-- Classic "guess a number game/dialogue"
guess :: Int -> m()
guess n = promptInt "Guess:" m -> f
where f m = if m == n
then echo "Found"
else (if m > n
then echo "Too big"
then echo "Too small") >> guess n
The operations of a monad
A Monad is a set of actions which can be composed with the return and >>= operators:
>>= for action composition;
return for producing a value without any (side-)effect.
These two operators are the minimal operators needed to define a Monad.
In Haskell, the >> operator is needed as well but it can in fact be derived from >>=:
(>>): Monad m => m a -> m b -> m b
a >> b = a >>= f
where f x = b
In Haskell, an extra fail operator is need as well but this is really a hack (and it might be removed from Monad in the future).
This is the Haskell definition of a Monad:
class Monad m where
return :: m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b -- can be derived from (>>=)
fail :: String -> m a -- mostly a hack
Actions are first-class
One great thing about monads is that actions are first-class. You can take them in a variable, you can define function which take actions as input and produce some other actions as output. For example, we can define a while operator:
-- while x y : does action y while action x output True
while :: (Monad m) => m Boolean -> m a -> m ()
while x y = x >>= f
where f True = y >> while x y
f False = return ()
Summary
A Monad is a set of actions in some domain. The monad/domain define the kind of "effects" which are possible. The >> and >>= operators represent sequencing of actions and monadic expression may be used to represent any kind of "imperative (sub)program" in your (functional) Haskell program.
The great things are that:
you can design your own Monad which supports the features and effects that you want
see Prompt for an example of a "dialogue only subprogram",
see Rand for an example of "sampling only subprogram";
you can write your own control structures (while, throw, catch or more exotic ones) as functions taking actions and composing them in some way to produce a bigger macro-actions.
MonadRandom
A good way of understanding monads, is the MonadRandom package. The Rand monad is made of actions whose output can be random (the effect is randomness). An action in this monad is some kind of random variable (or more exactly a sampling process):
-- Sample an Int from some distribution
action :: Rand Int
Using Rand to do some sampling/random algorithms is quite interesting because you have random variables as first class values:
-- Estimate mean by sampling nsamples times the random variable x
sampleMean :: Real a => Int -> m a -> m a
sampleMean n x = ...
In this setting, the sequence function from Prelude,
sequence :: Monad m => [m a] -> m [a]
becomes
sequence :: [Rand a] -> Rand [a]
It creates a random variable obtained by sampling independently from a list of random variables.
There are three main observations concerning the IO monad:
1) You can't get values out of it. Other types like Maybe might allow to extract values, but neither the monad class interface itself nor the IO data type allow it.
2) "Inside" IO is not only the real value but also that "RealWorld" thing. This dummy value is used to enforce the chaining of actions by the type system: If you have two independent calculations, the use of >>= makes the second calculation dependent on the first.
3) Assume a non-deterministic thing like random :: () -> Int, which isn't allowed in Haskell. If you change the signature to random :: Blubb -> (Blubb, Int), it is allowed, if you make sure that nobody ever can use a Blubb twice: Because in that case all inputs are "different", it is no problem that the outputs are different as well.
Now we can use the fact 1): Nobody can get something out of IO, so we can use the RealWord dummy hidden in IO to serve as a Blubb. There is only one IOin the whole application (the one we get from main), and it takes care of proper sequentiation, as we have seen in 2). Problem solved.
One thing that often helps me to understand the nature of something is to examine it in the most trivial way possible. That way, I'm not getting distracted by potentially unrelated concepts. With that in mind, I think it may be helpful to understand the nature of the Identity Monad, as it's the most trivial implementation of a Monad possible (I think).
What is interesting about the Identity Monad? I think it is that it allows me to express the idea of evaluating expressions in a context defined by other expressions. And to me, that is the essence of every Monad I've encountered (so far).
If you already had a lot of exposure to 'mainstream' programming languages before learning Haskell (like I did), then this doesn't seem very interesting at all. After all, in a mainstream programming language, statements are executed in sequence, one after the other (excepting control-flow constructs, of course). And naturally, we can assume that every statement is evaluated in the context of all previously executed statements and that those previously executed statements may alter the environment and the behavior of the currently executing statement.
All of that is pretty much a foreign concept in a functional, lazy language like Haskell. The order in which computations are evaluated in Haskell is well-defined, but sometimes hard to predict, and even harder to control. And for many kinds of problems, that's just fine. But other sorts of problems (e.g. IO) are hard to solve without some convenient way to establish an implicit order and context between the computations in your program.
As far as side-effects go, specifically, often they can be transformed (via a Monad) in to simple state-passing, which is perfectly legal in a pure functional language. Some Monads don't seem to be of that nature, however. Monads such as the IO Monad or the ST monad literally perform side-effecting actions. There are many ways to think about this, but one way that I think about it is that just because my computations must exist in a world without side-effects, the Monad may not. As such, the Monad is free to establish a context for my computation to execute that is based on side-effects defined by other computations.
Finally, I must disclaim that I am definitely not a Haskell expert. As such, please understand that everything I've said is pretty much my own thoughts on this subject and I may very well disown them later when I understand Monads more fully.
the point is so there can be clean error handling in a chain of functions, containers, and side effects
More or less.
how exactly is the problem of side-effects solved?
A value in the I/O monad, i.e. one of type IO a, should be interpreted as a program. p >> q on IO values can then be interpreted as the operator that combines two programs into one that first executes p, then q. The other monad operators have similar interpretations. By assigning a program to the name main, you declare to the compiler that that is the program that has to be executed by its output object code.
As for the list monad, it's not really related to the I/O monad except in a very abstract mathematical sense. The IO monad gives deterministic computation with side effects, while the list monad gives non-deterministic (but not random!) backtracking search, somewhat similar to Prolog's modus operandi.
With this concept of containers, the language essentially says anything inside the containers is non-deterministic
No. Haskell is deterministic. If you ask for integer addition 2+2 you will always get 4.
"Nondeterministic" is only a metaphor, a way of thinking. Everything is deterministic under the hood. If you have this code:
do x <- [4,5]
y <- [0,1]
return (x+y)
it is roughly equivalent to Python code
l = []
for x in [4,5]:
for y in [0,1]:
l.append(x+y)
You see nondeterminism here? No, it's deterministic construction of a list. Run it twice, you'll get the same numbers in the same order.
You can describe it this way: Choose arbitrary x from [4,5]. Choose arbitrary y from [0,1]. Return x+y. Collect all possible results.
That way seems to involve nondeterminism, but it's only a nested loop (list comprehension). There is no "real" nondeterminism here, it's simulated by checking all possibilities. Nondeterminism is an illusion. The code only appears to be nondeterministic.
This code using State monad:
do put 0
x <- get
put (x+2)
y <- get
return (y+3)
gives 5 and seems to involve changing state. As with lists it's an illusion. There are no "variables" that change (as in imperative languages). Everything is nonmutable under the hood.
You can describe the code this way: put 0 to a variable. Read the value of a variable to x. Put (x+2) to the variable. Read the variable to y, and return y+3.
That way seems to involve state, but it's only composing functions passing additional parameter. There is no "real" mutability here, it's simulated by composition. Mutability is an illusion. The code only appears to be using it.
Haskell does it this way: you've got functions
a -> s -> (b,s)
This function takes and old value of state and returns new value. It does not involve mutability or change variables. It's a function in mathematical sense.
For example the function "put" takes new value of state, ignores current state and returns new state:
put x _ = ((), x)
Just like you can compose two normal functions
a -> b
b -> c
into
a -> c
using (.) operator you can compose "state" transformers
a -> s -> (b,s)
b -> s -> (c,s)
into a single function
a -> s -> (c,s)
Try writing the composition operator yourself. This is what really happens, there are no "side effects" only passing arguments to functions.
From what I understand, Monad is just another typeclass that declares ways to interact with data [...]
...providing an interface common to all those types which have an instance. This can then be used to provide generic definitions which work across all monadic types.
It seems clever and clean to implement these 3 things with one concept [...]
...the only three things that are implemented are the instances for those three types (list, Maybe and IO) - the types themselves are defined independently elsewhere.
[...] but really, the point is so there can be clean error handling in a chain of functions, containers, and side effects.
Not just error handling e.g. consider ST - without the monadic interface, you would have to pass the encapsulated-state directly and correctly...a tiresome task.
How exactly is the problem of side-effects solved?
Short answer: Haskell solves manages them by using types to indicate their presence.
Can someone explain how, intuitively, Haskell gets away with changing state with inputs and output?
"Intuitively"...like what's available over here? Let's try a simple direct comparison instead:
From How to Declare an Imperative by Philip Wadler:
(* page 26 *)
type 'a io = unit -> 'a
infix >>=
val >>= : 'a io * ('a -> 'b io) -> 'b io
fun m >>= k = fn () => let
val x = m ()
val y = k x ()
in
y
end
val return : 'a -> 'a io
fun return x = fn () => x
val putc : char -> unit io
fun putc c = fn () => putcML c
val getc : char io
val getc = fn () => getcML ()
fun getcML () =
valOf(TextIO.input1(TextIO.stdIn))
(* page 25 *)
fun putcML c =
TextIO.output1(TextIO.stdOut,c)
Based on these two answers of mine, this is my Haskell translation:
type IO a = OI -> a
(>>=) :: IO a -> (a -> IO b) -> IO b
m >>= k = \ u -> let !(u1, u2) = part u in
let !x = m u1 in
let !y = k x u2 in
y
return :: a -> IO a
return x = \ u -> let !_ = part u in x
putc :: Char -> IO ()
putc c = \ u -> putcOI c u
getc :: IO Char
getc = \ u -> getcOI u
-- primitives
data OI
partOI :: OI -> (OI, OI)
putcOI :: Char -> OI -> ()
getcOI :: OI -> Char
Now remember that short answer about side-effects?
Haskell manages them by using types to indicate their presence.
Data.Char.chr :: Int -> Char -- no side effects
getChar :: IO Char -- side effects at
{- :: OI -> Char -} -- work: beware!

Haskell -- dual personality IO / ST monad?

I have some code that currently uses a ST monad for evaluation. I like not putting IO everywhere because the runST method produces a pure result, and indicates that such result is safe to call (versus unsafePerformIO). However, as some of my code has gotten longer, I do want to put debugging print statements in.
Is there any class that provides a dual-personality monad [or typeclass machinery], one which can be a ST or an IO (depending on its type or a "isDebug" flag)? I recall SPJ introduced a "Mutation" class in his "Fun with Type Functions" paper, which used associative types to relate IO to IORef and ST to STRef. Does such exist as a package somewhere?
Edit / solution
Thanks very much [the nth time], C.A. McCann! Using that solution, I was able to introduce an additional class for monads which support a pdebug function. The ST monad will ignore these calls, whereas IO will run putStrLn.
class DebugMonad m where
pdebug :: String -> m ()
instance DebugMonad (ST s) where
pdebug _ = return ()
instance DebugMonad IO where
pdebug = putStrLn
test initV = do
v <- newRef initV
modifyRef v (+1)
pdebug "debug"
readRef v
testR v = runST $ test v
This has a very fortunate consequence in ghci. Since it expects expressions to be IO types by default, running something like "test 3" will result in the IO monad being run, so you can debug it easily, and then call it with something like "testR" when you actually want to run it.
If you want a unified interface to IORef and STRef, have you looked at the stateref package? It has type classes for "references to mutable data", separated for readable, writable, etc., with instances for IORef and STRef, as well as things like TVar, MVar, ForeignPtr, etc.
Have you considered Debug.Trace.trace instead?
http://www.haskell.org/haskellwiki/Debugging

Resources