I am extremely new into Machine learning Feature of Python. I wanted to group i.e. create a cluster based on specific texts from rows. In there are 3 columns Sr no, Name and Summary. I wanted to create a cluster based on the specific values from the summary text i.e. if the summary contains the text "Veg", then it should be in one cluster and if the text contains "Non Veg", then it should be in another cluster. Expected Output , where the third column will contain the clustered value. All veg are grouped to Cluster 0 and Non Veg to cluster 1
K-means can solve this for me. But how to cluster based on the text from the summary. Kindly help. Thanks in advance.
I would go one further than suggestions in the comments and say that you don't need to use Python for this task. Why not just include the following formula in the cluster column:
=IF(ISNUMBER(SEARCH("non veg", D3)), 1, IF(ISNUMBER(SEARCH("veg", D3)), 0, -1))
Assuming the top-left corner of your tale is B2, and this is the formula in the first row (i.e. in cell E3 of the table). This should give 0 for any cells containing non veg, 1 for cells containing veg and -1 for any rows containing neither.
You can of course do something similar in Python as suggested by #juanpa.arrivillaga, but if your input and desired output are in excel, and there's an easy way to do it in excel, I would suggest that's easiest option.
You can use xlrd for read Excel file.
You can use pandas to read Excel file also.
Following Demo is with pandas
Steps
Read Excel file and create Dataframe from it. pandas.read_excel method.
Write a function which return cluster number according to Summary value in each row.
Input to this function is row
output is 0(Vegetarian), 1(Non Vegetarian), -1(not define)
Apply this function to each row of Dataframe.
Write final output back to Excel file by pandas.to_excel method.
code:
>>> import pandas as pd
>>> a = "43583564_input.xlsx"
>>> df = pd.read_excel(a)
>>> df
sr. no Name Summary
0 1 T1 I am Vegetarian
1 2 T2 I am Non Vegetarian
2 3 T3 I am Non Vegetarian
3 4 T4 I am Vegetarian
4 5 T5 I am Non Vegetarian
>>> def getCluster(row):
... if row["Summary"]=="I am Non Vegetarian":
... return 1
... elif row["Summary"]=="I am Vegetarian":
... return 0
... else:
... return -1
...
>>> df["Cluster"] = df.apply(getCluster, axis=1)
>>> df
sr. no Name Summary Cluster
0 1 T1 I am Vegetarian 0
1 2 T2 I am Non Vegetarian 1
2 3 T3 I am Non Vegetarian 1
3 4 T4 I am Vegetarian 0
4 5 T5 I am Non Vegetarian 1
>>> df.to_excel("43583564_output.xlsx")
Related
beginner here!
I have a csv file with comma separated values. I want to split each comma separated value in different rows in pandas. However, the corresponding dollar amounts should be divided by the number of comma separated values in each cell and export the result in a different csv file.
the csv table and the desired output table
I have used df.explode(IDs) but couldn’t figure out how to divide the Dollar_Amount by the number of IDs in the corresponding cells.
import pandas as pd
in_csv = pd.read_csv(‘inputCSV.csv’)
new_csv = df.explode(‘IDs’)
new_csv.to_csv(‘outputCSV.csv’)
You can divide the dollar amount by the number of ids in each row before using explode. This can be done as follows:
# Preprocessing
df['Dollar_Amount'] = df['Dollar_Amount'].str[1:].str.replace(',', '').astype(float)
df['IDs'] = df['IDs'].str.split(",")
# Compute the new dollar amount and explode
df['Dollar_Amount'] = df['Dollar_Amount'] / df['IDs'].str.len()
df = df.explode('IDs')
# Postprocessing
df['Dollar_Amount'] = df['Dollar_Amount'].round(2).apply(lambda x: '${0:,.2f}'.format(x))
With an example input:
IDs Dollar_Amount A
0 1,2,3,4 $100,000.00 4
1 5,6,7 $50,000.00 3
2 9 $20,000.00 1
3 10,11 $20,000.00 2
The result is as follows:
IDs Dollar_Amount A
0 1 $25,000.00 4
0 2 $25,000.00 4
0 3 $25,000.00 4
0 4 $25,000.00 4
1 5 $16,666.67 3
1 6 $16,666.67 3
1 7 $16,666.67 3
2 9 $20,000.00 1
3 10 $10,000.00 2
3 11 $10,000.00 2
There will be a one line way to do this with a lambda function (if you are new, read up on lambda functions!) but as a slightly less new beginner, I think its easier to think about this as two separate operations.
Operation 1 - get the count of ids, Operation 2 - do the division
If you take a look here https://towardsdatascience.com/count-occurrences-of-a-value-pandas-e5dad02303e9 you'll get a good lesson on how to do the group by you need to get the count of ids and join it back to your data frame. I'd read that because its a much more detailed explainer, but if you want a simple line of code consider this Pandas, how to count the occurance within grouped dataframe and create new column?
Once you have it, the divison is as simple as df['new_col'] = df['col1']/df['col2']
I have a dataframe like this:
df = pd.DataFrame({'id':[10,20,30,40],'text':['some text','another text','random stuff', 'my cat is a god'],
'A':[0,0,1,1],
'B':[1,1,0,0],
'C':[0,0,0,1],
'D':[1,0,1,0]})
Here I have columns from Ato D but my real dataframe has 100 columns with values of 0and 1. This real dataframe has 100k reacords.
For example, the column A is related to the 3rd and 4rd row of text, because it is labeled as 1. The Same way, A is not related to the 1st and 2nd rows of text because it is labeled as 0.
What I need to do is to sample this dataframe in a way that I have the same or about the same number of features.
In this case, the feature C has only one occurrece, so I need to filter all others columns in a way that I have one text with A, one text with B, one text with Cetc..
The best would be: I can set using for example n=100 that means I want to sample in a way that I have 100 records with all the features.
This dataset is a multilabel dataset training and is higly unbalanced, I am looking for the best way to balance it for a machine learning task.
Important: I don't want to exclude the 0 features. I just want to have ABOUT the same number of columns with 1 and 0
For example. with a final data set with 1k records, I would like to have all columns from A to the final_column and all these columns with the same numbers of 1 and 0. To accomplish this I will need to random discard text rows and id only.
The approach I was trying was to look to the feature with the lowest 1 and 0 counts and then use this value as threshold.
Edit 1: One possible way I thought is to use:
df.sum(axis=0, skipna=True)
Then I can use the column with the lowest sum value as threshold to filter the text column. I dont know how to do this filtering step
Thanks
The exact output you expect is unclear, but assuming you want to get 1 random row per letter with 1 you could reshape (while dropping the 0s) and use GroupBy.sample:
(df
.set_index(['id', 'text'])
.replace(0, float('nan'))
.stack()
.groupby(level=-1).sample(n=1)
.reset_index()
)
NB. you can rename the columns if needed
output:
id text level_2 0
0 30 random stuff A 1.0
1 20 another text B 1.0
2 40 my cat is a god C 1.0
3 30 random stuff D 1.0
I have a excel file with 200 columns. The first column is no. of visits, and other columns are the data with number of people for that number of visits
Visits A B C D
2 10 0 30 40
3 5 6 0 1
4 2 3 1 0
I want to write a function so that I have multiple dataframes with Visit column and A; visit column and B, and so on (I want to write a function, as the number of columns will increase in the future and I want to automatize the process). Also, I want to remove the data with 0.
Desired output:
dataframe 1:
visits A
dataframe 2:
Visits B
3 6
4 3
This is my first question. So sorry, if it is not properly framed. Thank you for your help.
Use DataFrame.items:
for i,col in df.set_index('visits').items():
print(col[col.ne(0)].to_frame(i).reset_index())
You can create a dict to save by the name of columns
dfs={i:col[col.ne(0)].to_frame(i).reset_index() for i,col in df.set_index('visits').items()}
I am trying to take data of two sheets and comparing with each other if it matches i want to append column. Let me explain this by showing what i am doing and what i am trying to get in output using python.
This is my sheet1 from excel.xlsx:
it contains four column name,class,age and group.
This is my sheet2 from excel.xlsx:
it contains default, and name column with extra names in it.
So, Now i am trying to match name of sheet2 with sheet1, if the name containing in sheet1 matches with sheet2 then i want to add default value corresponding to that name from sheet2.
This i need in output:
As you can see only Ravi and Neha having default in sheet2 and that name matches with sheet1 name. Suhash and Aish dont have any default value so not anything coming there.
This code i tried:
import pandas as pd
import xlrd
df1 = pd.read_excel('stack.xlsx', sheet_name='Sheet1')
df2 = pd.read_excel('stack.xlsx', sheet_name='Sheet2')
df1['DEFAULT'] = df1.NAME.map(df2.set_index('NAME')['DEFAULT'].to_dict())
df1.to_excel('play.xlsx',index=False)
and getting output excel like this:
Not getting default against Ravi.
Please help me with this to get this expected output using python.
Assuming you read each sheet into a dataframe (df = sheet1, df2 = sheet2)
it's quite easy and there are a few options (ranked in order of speed, from fastest to slowest):
# .merge
df = df.merge(df2, how='left', on='Name')
# pd.conact
df = pd.concat([df.set_index('Name'), df2.set_index('Name').Default], axis=1, sort='Name', join='inner')
# .join
df = df.set_index('Name').join(df2.set_index('Name'))
# .map
df.Default = df.Name.map(df2.set_index('Name')['Default'].to_dict())
All of them will have the following output:
Name Default Class Age Group
0 NaN NaN 4 2 tig
1 Ravi 2.0 5 5 rose
2 NaN NaN 3 3 lily
3 Suhas NaN 5 5 rose
4 NaN NaN 2 2 sun
5 Neha 3.0 5 5 rose
6 NaN NaN 5 2 sun
7 Aish NaN 5 5 rose
Then you overwrite the original sheet by using df.to_excel
EDIT
So the code you shared has 3 problems. One of which seems to be a language barrier... You only need 1 of the options I gave you. Secondly there's a missing ' when reading the first sheet into df. And lastly you're inconsistent when using the df names. you defined df1 and df2 but used just df in the code which doesn't work
So the correct code would be as follows:
import pandas as pd
import xlrd
df1 = pd.read_excel('stack.xlsx', sheet_name='Sheet1') #Here the ' was missing
df2 = pd.read_excel('stack.xlsx', sheet_name='Sheet2')
## Now you chose one of the options, I used map here, but you can pick any one of them
df1.DEFAULT = df1.NAME.map(df2.set_index('NAME')['DEFAULT'].to_dict())
df1.to_excel('play.xlsx',index=False)
I am inputting multiple spreadsheets with multiple columns of data. For each spreadsheet, the maximum value of each column is found. Then, for each element in the column, the element is divided by the maximum value of that column. The output should be a value (between 0 and 1) for each element in the column in ascending order. This is appended to a list which should be added to the source spreadsheet as a column.
Currently, the nested loops are performing correctly apart from the final step, as far as I understand. Each column is added to the spreadsheet EXCEPT the values are for the final column of the source spreadsheet rather than values related to each individual column.
I have tried changing the indents to associate levels of the code with different parts (as I think this is the problem) and tried moving the appended column along in the dataframe, to no avail.
for i in distlist:
#listname = i[4:] + '_norm'
df2 = pd.read_excel(i,header=0,index_col=None, skip_blank_lines=True)
df3 = df2.dropna(axis=0, how='any')
cols = []
for column in df3:
cols.append(column)
for x in cols:
listname = x + ' norm'
maxval = df3[x].max()
print(maxval)
mylist = []
for j in df3[x]:
findNL = (j/maxval)
mylist.append(findNL)
df3[listname] = mylist
saveloc = 'E:/test/'
filename = i[:-18] + '_Normalised.xlsx'
df3.to_excel(saveloc+filename, index=False)
New columns are added to the output dataframe with bespoke headings relating to the field headers in the source spreadsheet and renamed according to (listname). The data in each one of these new columns is identical and relates to the final column in the spreadsheet. To me, it seems to be overwriting the values each time (as if looping through the entire spreadsheet, not outputting for each column), and adding it to the spreadsheet.
Any help would be much appreciated. I think it's something simple, but I haven't managed to work out what...
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame({'col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8]})
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply and use add_suffix to give the new columns _norm suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help #Erfan