Difference between context switch of thread and context switch of process - multithreading

I know here ,there is an explanation for this question.But i am bit confused with some points-:
Let i have thread T(1-a) and T(1-b) belonging to process P1 and thread T(2-a) and T(2-b) belonging to process P2.
Now my question is -:
Thread T(1-a) wants to do context switch to Thread T(1-b).According to this answer,
Both types(process Context switch and thread context switch) involve handing control over to the operating system kernel to perform the context switch(i am mainly talking about thread context switch).
Doubt
if T(1-a) and T(1-b) are user level threads,Kernel won't be able to
distinguish
T(1-a) and T(1-b),then how context switch will be done?
Let all threads T(1-a),T(1-b),T(2-a) and T(2-b) be kernel level threads and if thread T(1-a) wants to context switch to T(2-b).
Doubt
won't the cost/dealy will be same as that of process context switch as not only virtual memory space gets changed but also TLB gets flushed??

The way to think about this is that User Threads and Kernel Threads are two completely different animals.
There is no context switch in user threads under the term's normal and customary meaning.
Both types(process Context switch and thread context switch) involve handing control over to the operating system kernel to perform the context switch(i am mainly talking about thread context switch).
I see your confusion. First of all, what is being described here only applies to Kernel Threads. Second, (and this problem is clearly the result of wording and not the overall message), in Kernel Threads, there are no "process context switches," there are only "Thread Context Switches".
In ye olde days when there were no threads, a change in scheduling meant a change in a process context. The hardware instructions to do this have names like Load Process Context and Save Process Context. But in operating system that schedule threads (kernel threads) we are left with this old terminology that is no longer very precise. (This is a problem that occurs in many places when explaining operating systems).
if T(1-a) and T(1-b) are user level threads,Kernel won't be able to distinguish T(1-a) and T(1-b),then how context switch will be done?
If they are user level threads, the kernel does not know or care about them. The switch among them is handled by a user library. The switching of "threads" is not a context switch.
won't the cost/dealy will be same as that of process context switch as not only virtual memory space gets changed but also TLB gets flushed??
Hopefully, the operating system is smart enough to know not to flush memory caches when it switches among threads in the same process.
I am convinced that academics need to abandon the kernel/user thread (and even worse, 1-to-1, many-to-1, and many-to-many [yuk]) constructs. In their place I suggest using the terms
"real threads" and "simulated threads".

Related

Context switch between kernel threads vs user threads

Copy pasted from this link:
Thread switching does not require Kernel mode privileges.
User level threads are fast to create and manage.
Kernel threads are generally slower to create and manage than the user threads.
Transfer of control from one thread to another within the same process requires a mode switch to the Kernel.
I never came across these points while reading standard operating systems reference books. Though these points sound logical, I wanted to know how they reflect in Linux. To be precise :
Can someone give detailed steps involved in context switching between user threads and kernel threads, so that I can find the step difference between the two.
Can someone explain the difference with actual context switch example or code. May be system calls involved (in case of context switching between kernel threads) and thread library calls involved (in case of context switching between user threads).
Can someone link me to Linux source code line (say on github) handling context switch.
I also doubt why context switch between kernel threads requires changing to kernel mode. Aren't we already in kernel mode for first thread?
Can someone give detailed steps involved in context switching between user threads and kernel threads, so that I can find the step difference between the two.
Let's imagine a thread needs to read data from a file, but the file isn't cached in memory and disk drives are slow so the thread has to wait; and for simplicity let's also assume that the kernel is monolithic.
For kernel threading:
thread calls a "read()" function in a library or something; which must cause at least a switch to kernel code (because it's going to involve device drivers).
the kernel adds the IO request to the disk driver's "queue of possibly many pending requests"; realizes the thread will need to wait until the request completes, sets the thread to "blocked waiting for IO" and switches to a different thread (that may belong to a completely different process, depending on global thread priorities). The kernel returns to the user-space of whatever thread it switch to.
later; the disk hardware causes an IRQ which causes a switch back to the IRQ handler in kernel code. The disk driver finishes up the work it had to do the for (currently blocked) thread and unblocks that thread. At this point the kernel might decide to switch to the "now unblocked" thread; and the kernel returns to the user-space of the "now unblocked" thread.
For user threading:
thread calls a "read()" function in a library or something; which must cause at least a switch to kernel code (because it's going to involve device drivers).
the kernel adds the IO request to the disk driver's "queue of possibly many pending requests"; realizes the thread will need to wait until the request completes but can't take care of that because some fool decided to make everything worse by doing thread switching in user space, so the kernel returns to user-space with "IO request has been queued" status.
after the pointless extra overhead of switching back to user-space; the user-space scheduler does the thread switch that the kernel could have done. At this point the user-space scheduler will either tell kernel it has nothing to do and you'll have more pointless extra overhead switching back to kernel; or user-space scheduler will do a thread switch to another thread in the same process (which may be the wrong thread because a thread in a different process is higher priority).
later; the disk hardware causes an IRQ which causes a switch back to the IRQ handler in kernel code. The disk driver finishes up the work it had to do for the (currently blocked) thread; but the kernel isn't able to do the thread switch to unblock the thread because some fool decided to make everything worse by doing thread switching in user space. Now we've got a problem - how does kernel inform the user-space scheduler that the IO has finished? To solve this (without any "user-space scheduler running zero threads constantly polls kernel" insanity) you have to have some kind of "kernel puts notification of IO completion on some kind of queue and (if the process was idle) wakes the process up" which (on its own) will be more expensive than just doing the thread switch in the kernel. Of course if the process wasn't idle then code in user-space is going to have to poll its notification queue to find out if/when the "notification of IO completion" arrives, and that's going to increase latency and overhead. In any case, after lots of stupid pointless and avoidable overhead; the user-space scheduler can do the thread switch.
Can someone explain the difference with actual context switch example or code. May be system calls involved (in case of context switching between kernel threads) and thread library calls involved (in case of context switching between user threads).
The actual low-level context switch code typically begins with something like:
save whichever registers are "caller preserved" according to the calling conventions on the stack
save the current stack top in some kind of "thread info structure" belonging to the old thread
load a new stack top from some kind of "thread info structure" belonging to the new thread
pop whichever registers are "caller preserved" according to the calling conventions
return
However:
usually (for modern CPUs) there's a relatively large amount of "SIMD register state" (e.g. for 80x86 with support for AVX-512 I think it's over 4 KiB of of stuff). CPU manufacturers often have mechanisms to avoid saving parts of that state if it wasn't changed, and to (optionally) postpone the loading of (pieces of) that state until its actually used (and avoid it completely if its not actually used). All of that requires kernel.
if it's a task switch and not just used for thread switches you might need some kind of "if virtual address space needs to change { change virtual address space }" on top of that
normally you want to keep track of statistics, like how much CPU time a thread has used. This requires some kind of "thread_info.time_used += now() - time_at_last_thread_switch;"; which gets difficulty/ugly when "process switching" is separated from "thread switching".
normally there's other state (e.g. pointer to thread local storage, special registers for performance monitoring and/or debugging, ...) that may need to be saved/loaded during thread switches. Often this state is not directly accessible in user code.
normally you also want to set a timer to expire when the thread has used too much time; either because you're doing some kind of "time multiplexing" (e.g. round-robin scheduler) or because its a cooperating scheduler where you need to have some kind of "terminate this task after 5 seconds of not responding in case it goes into an infinite loop forever" safe-guard.
this is just the low level task/thread switching in isolation. There is almost always higher level code to select a task to switch to, handle "thread used too much CPU time", etc.
Can someone link me to Linux source code line (say on github) handling context switch
Someone probably can't. It's not one line; it's many lines of assembly for each different architecture, plus extra higher-level code (for timers, support routines, the "select a task to switch to" code, for exception handlers to support "lazy SIMD state load", ...); which probably all adds up to something like 10 thousand lines of code spread across 50 files.
I also doubt why context switch between kernel threads requires changing to kernel mode. Aren't we already in kernel mode for first thread?
Yes; often you're already in kernel code when you find out that a thread switch is needed.
Rarely/sometimes (mostly only due to communication between threads belonging to the same process - e.g. 2 or more threads in the same process trying to acquire the same mutex/semaphore at the same time; or threads sending data to each other and waiting for data from each other to arrive) kernel isn't involved; and in some cases (which are almost always massive design failures - e.g. extreme lock contention problems, failure to use "worker thread pools" to limit the number of threads needed, etc) it's possible for this to be the dominant cause of thread switches, and therefore possible that doing thread switches in user space can be beneficial (e.g. as a work-around for the massive design failures).
Don't limit yourself to Linux or even UNIX, they are neither the first nor last word on systems or programming models. The synchronous execution model dates back to the early days of computing, and are not particularly well suited to larger scale concurrent and reactive programming.
Golang, for example, employs a great many lightweight user threads -- goroutines -- and multiplexes them on a smaller set of heavyweight kernel threads to produce a more compelling concurrency paradigm. Some other programming systems take similar approaches.

If you have One-to-One-Mapping of Kernel- and User-Threads, why isn't process be blocked, if it makes a system-call?

I often read that when you have many-to-one-mapping, a sys-call would block the whole process, but a one-to-one would'nt. But why? The Thread that makes the sys-call is blocked anyway and can't make a switch-command to the other user-thread.
The kernel schedules the threads not the processes globally.
In a very general case when a process is made of just its main thread, we use a kind of shortcut in the manner of speaking and say that the kernel schedules those processes, but it is just a (very common) corner case.
Each thread can have its own priority, its own affinity to some CPUs...
But by default these properties are inherited from the main thread in the process it belongs to, and if we don't change them explicitly, we can have the illusion that all these threads inside a single process form one single entity from the scheduler point of view; but it is not the case.
When one thread is blocked on a system call for example, this does not prevent the other threads from being run.
The blocked thread does not decide of anything concerning the next thread to be run (except if we explicitly build a dedicated applicative synchronisation mechanism with cond-vars...).
The switch to another thread, in the same or another process, is entirely decided by the OS scheduler.
Another confusing situation for example is when a segmentation fault occurs in a thread.
Since the address space is shared between all the threads inside a single process, this is the process as a whole that must be terminated.
Then all its threads disappear at once, which gives again the illusion that all these threads form one single entity from the scheduler point of view; but it is more related to address space management than scheduling.
note: there may exist some user-space implementations of threads in which the OS scheduler have no way to consider these threads as distinct (it sees only the main thread of the process).
Depending on the internal details of such user-space implementations, a blocking system call could lead to blocking the entire process or not.
Nowadays, it is much more common to rely on the native threads provided by the kernel.
I think there's one very specific thing that you're missing.
When you have a one-to-one mapping of user threads to kernel threads, that means that each user thread has its own kernel thread. There's no "switch-command to the other user thread" because the other user thread is another kernel thread, and it's the kernel's job to switch between kernel threads. On modern operating systems, the kernel can easily switch kernel threads when a thread is blocked in a system call.
When you have a many-to-one mapping of user threads, that means a single kernel thread is expected to run code for more than one user thread. Here, the user code has to do something to cause that same kernel thread to execute code for another user thread. It can't do that if it's blocked in a system call.

thread context switch and process context switch

I remember from "Linux kernel development" book that for Linux scheduler threads and process are the same (tasks) and when interrupt arrives or thread waits for something to happen scheduler pics another task to execute. I was completely unaware of thread and process context switch until I saw this question. The answer explains in good details costs of each switch, however the idea of having two type of switches is fuzzy for me.
Both types involve handing control over to the operating system
How can virtual memory space remain the same during thread switch if both switches involve handing control over to the operating system? If it remains the same and thread switch is cheaper than process switch then kernel scheduler should somehow prefer tasks which are in same process, right? Does Linux do something like this?

Once the thread is yielded, Operating system will switch execution to an idol process?

I am new to operating System so I could not understand this concept that
Once the thread is yielded, Operating system will switch execution to an idol process to change the priority of current calling thread. ???
if yes then how if no then how ??????
When a thread yields, the operating system might use that core to run any ready-to-run thread (either from the same process or some other process) that it believes should run. It may also switch immediately back to the yielding thread even if there are other ready-to-run threads because doing otherwise might require expensive inter-core synchronization.
The "how" is basically as follows:
The OS enters protected mode and calls the scheduler to see if there's another ready-to-run thread.
If there is, a context switch takes place and the user context to restore is switched to the context of the new thread and the old thread's context is stored.
The kernel switches back to user space, restoring the user context of the thread it wishes to run.
Some OSes have separate pools of ready-to-run threads for each core to avoid the scheduler having "one big lock" that slows down context switches due to inter-core synchronization. Such an OS might not actually yield if all ready-to-run threads are "owned" by other cores, or it might decide that this situation justifies inter-core synchronization and check the other cores to "steal" a ready-to-run thread (or "trade" threads).

Difference between user-level and kernel-supported threads?

I've been looking through a few notes based on this topic, and although I have an understanding of threads in general, I'm not really to sure about the differences between user-level and kernel-level threads.
I know that processes are basically made up of multiple threads or a single thread, but are these thread of the two prior mentioned types?
From what I understand, kernel-supported threads have access to the kernel for system calls and other uses not available to user-level threads.
So, are user-level threads simply threads created by the programmer when then utilise kernel-supported threads to perform operations that couldn't be normally performed due to its state?
Edit: The question was a little confusing, so I'm answering it two different ways.
OS-level threads vs Green Threads
For clarity, I usually say "OS-level threads" or "native threads" instead of "Kernel-level threads" (which I confused with "kernel threads" in my original answer below.) OS-level threads are created and managed by the OS. Most languages have support for them. (C, recent Java, etc) They are extremely hard to use because you are 100% responsible for preventing problems. In some languages, even the native data structures (such as Hashes or Dictionaries) will break without extra locking code.
The opposite of an OS-thread is a green thread that is managed by your language. These threads are given various names depending on the language (coroutines in C, goroutines in Go, fibers in Ruby, etc). These threads only exist inside your language and not in your OS. Because the language chooses context switches (i.e. at the end of a statement), it prevents TONS of subtle race conditions (such as seeing a partially-copied structure, or needing to lock most data structures). The programmer sees "blocking" calls (i.e. data = file.read() ), but the language translates it into async calls to the OS. The language then allows other green threads to run while waiting for the result.
Green threads are much simpler for the programmer, but their performance varies: If you have a LOT of threads, green threads can be better for both CPU and RAM. On the other hand, most green thread languages can't take advantage of multiple cores. (You can't even buy a single-core computer or phone anymore!). And a bad library can halt the entire language by doing a blocking OS call.
The best of both worlds is to have one OS thread per CPU, and many green threads that are magically moved around onto OS threads. Languages like Go and Erlang can do this.
system calls and other uses not available to user-level threads
This is only half true. Yes, you can easily cause problems if you call the OS yourself (i.e. do something that's blocking.) But the language usually has replacements, so you don't even notice. These replacements do call the kernel, just slightly differently than you think.
Kernel threads vs User Threads
Edit: This is my original answer, but it is about User space threads vs Kernel-only threads, which (in hindsight) probably wasn't the question.
User threads and Kernel threads are exactly the same. (You can see by looking in /proc/ and see that the kernel threads are there too.)
A User thread is one that executes user-space code. But it can call into kernel space at any time. It's still considered a "User" thread, even though it's executing kernel code at elevated security levels.
A Kernel thread is one that only runs kernel code and isn't associated with a user-space process. These are like "UNIX daemons", except they are kernel-only daemons. So you could say that the kernel is a multi-threaded program. For example, there is a kernel thread for swap. This forces all swap issues to get "serialized" into a single stream.
If a user thread needs something, it will call into the kernel, which marks that thread as sleeping. Later, the swap thread finds the data, so it marks the user thread as runnable. Later still, the "user thread" returns from the kernel back to userland as if nothing happened.
In fact, all threads start off in kernel space, because the clone() operation happens in kernel space. (And there's lots of kernel accounting to do before you can 'return' to a new process in user space.)
Before we go into comparison, let us first understand what a thread is. Threads are lightweight processes within the domain of independent processes. They are required because processes are heavy, consume a lot of resources and more importantly,
two separate processes cannot share a memory space.
Let's say you open a text editor. It's an independent process executing in the memory with a separate addressable location. You'll need many resources within this process, such as insert graphics, spell-checks etc. It's not feasible to create separate processes for each of these functionalities and maintain them independently in memory. To avoid this,
multiple threads can be created within a single process, which can
share a common memory space, existing independently within a process.
Now, coming back to your questions, one at a time.
I'm not really to sure about the differences between user-level and kernel-level threads.
Threads are broadly classified as user level threads and kernel level threads based on their domain of execution. There are also cases when one or many user thread maps to one or many kernel threads.
- User Level Threads
User level threads are mostly at the application level where an application creates these threads to sustain its execution in the main memory. Unless required, these thread work in isolation with kernel threads.
These are easier to create since they do not have to refer many registers and context switching is much faster than a kernel level thread.
User level thread, mostly can cause changes at the application level and the kernel level thread continues to execute at its own pace.
- Kernel Level Threads
These threads are mostly independent of the ongoing processes and are executed by the operating system.
These threads are required by the Operating System for tasks like memory management, process management etc.
Since these threads maintain, execute and report the processes required by the operating system; kernel level threads are more expensive to create and manage and context switching of these threads are slow.
Most of the kernel level threads can not be preempted by the user level threads.
MS DOS written for Intel 8088 didn't have dual mode of operation. Thus, a user level process had the ability to corrupt the entire operating system.
- User Level Threads mapped over Kernel Threads
This is perhaps the most interesting part. Many user level threads map over to kernel level thread, which in-turn communicate with the kernel.
Some of the prominent mappings are:
One to One
When one user level thread maps to only one kernel thread.
advantages: each user thread maps to one kernel thread. Even if one of the user thread issues a blocking system call, the other processes remain unaffected.
disadvantages: every user thread requires one kernel thread to interact and kernel threads are expensive to create and manage.
Many to One
When many user threads map to one kernel thread.
advantages: multiple kernel threads are not required since similar user threads can be mapped to one kernel thread.
disadvantage: even if one of the user thread issues a blocking system call, all the other user threads mapped to that kernel thread are blocked.
Also, a good level of concurrency cannot be achieved since the kernel will process only one kernel thread at a time.
Many to Many
When many user threads map to equal or lesser number of kernel threads. The programmer decides how many user threads will map to how many kernel threads. Some of the user threads might map to just one kernel thread.
advantages: a great level of concurrency is achieved. Programmer can decide some potentially dangerous threads which might issue a blocking system call and place them with the one-to-one mapping.
disadvantage: the number of kernel threads, if not decided cautiously can slow down the system.
The other part of your question:
kernel-supported threads have access to the kernel for system calls
and other uses not available to user-level threads.
So, are user-level threads simply threads created by the programmer
when then utilise kernel-supported threads to perform operations that
couldn't be normally performed due to its state?
Partially correct. Almost all the kernel thread have access to system calls and other critical interrupts since kernel threads are responsible for executing the processes of the OS. User thread will not have access to some of these critical features. e.g. a text editor can never shoot a thread which has the ability to change the physical address of the process. But if needed, a user thread can map to kernel thread and issue some of the system calls which it couldn't do as an independent entity. The kernel thread would then map this system call to the kernel and would execute actions, if deemed fit.
Quote from here :
Kernel-Level Threads
To make concurrency cheaper, the execution aspect of process is separated out into threads. As such, the OS now manages threads and processes. All thread operations are implemented in the kernel and the OS schedules all threads in the system. OS managed threads are called kernel-level threads or light weight processes.
NT: Threads
Solaris: Lightweight processes(LWP).
In this method, the kernel knows about and manages the threads. No runtime system is needed in this case. Instead of thread table in each process, the kernel has a thread table that keeps track of all threads in the system. In addition, the kernel also maintains the traditional process table to keep track of processes. Operating Systems kernel provides system call to create and manage threads.
Advantages:
Because kernel has full knowledge of all threads, Scheduler may decide to give more time to a process having large number of threads than process having small number of threads.
Kernel-level threads are especially good for applications that frequently block.
Disadvantages:
The kernel-level threads are slow and inefficient. For instance, threads operations are hundreds of times slower than that of user-level threads.
Since kernel must manage and schedule threads as well as processes. It require a full thread control block (TCB) for each thread to maintain information about threads. As a result there is significant overhead and increased in kernel complexity.
User-Level Threads
Kernel-Level threads make concurrency much cheaper than process because, much less state to allocate and initialize. However, for fine-grained concurrency, kernel-level threads still suffer from too much overhead. Thread operations still require system calls. Ideally, we require thread operations to be as fast as a procedure call. Kernel-Level threads have to be general to support the needs of all programmers, languages, runtimes, etc. For such fine grained concurrency we need still "cheaper" threads.
To make threads cheap and fast, they need to be implemented at user level. User-Level threads are managed entirely by the run-time system (user-level library).The kernel knows nothing about user-level threads and manages them as if they were single-threaded processes.User-Level threads are small and fast, each thread is represented by a PC,register,stack, and small thread control block. Creating a new thread, switiching between threads, and synchronizing threads are done via procedure call. i.e no kernel involvement. User-Level threads are hundred times faster than Kernel-Level threads.
Advantages:
The most obvious advantage of this technique is that a user-level threads package can be implemented on an Operating System that does not support threads.
User-level threads does not require modification to operating systems.
Simple Representation: Each thread is represented simply by a PC, registers, stack and a small control block, all stored in the user process address space.
Simple Management: This simply means that creating a thread, switching between threads and synchronization between threads can all be done without intervention of the kernel.
Fast and Efficient: Thread switching is not much more expensive than a procedure call.
Disadvantages:
User-Level threads are not a perfect solution as with everything else, they are a trade off. Since, User-Level threads are invisible to the OS they are not well integrated with the OS. As a result, Os can make poor decisions like scheduling a process with idle threads, blocking a process whose thread initiated an I/O even though the process has other threads that can run and unscheduling a process with a thread holding a lock. Solving this requires communication between between kernel and user-level thread manager.
There is a lack of coordination between threads and operating system kernel. Therefore, process as whole gets one time slice irrespect of whether process has one thread or 1000 threads within. It is up to each thread to relinquish control to other threads.
User-level threads requires non-blocking systems call i.e., a multithreaded kernel. Otherwise, entire process will blocked in the kernel, even if there are runable threads left in the processes. For example, if one thread causes a page fault, the process blocks.
User Threads
The library provides support for thread creation, scheduling and management with no support from the kernel.
The kernel unaware of user-level threads creation and scheduling are done in user space without kernel intervention.
User-level threads are generally fast to create and manage they have drawbacks however.
If the kernel is single-threaded, then any user-level thread performing a blocking system call will cause the entire process to block, even if other threads are available to run within the application.
User-thread libraries include POSIX Pthreads, Mach C-threads,
and Solaris 2 UI-threads.
Kernel threads
The kernel performs thread creation, scheduling, and management in kernel space.
kernel threads are generally slower to create and manage than are user threads.
the kernel is managing the threads, if a thread performs a blocking system call.
A multiprocessor environment, the kernel can schedule threads on different processors.
5.including Windows NT, Windows 2000, Solaris 2, BeOS, and Tru64 UNIX (formerlyDigital UN1X)-support kernel threads.
Some development environments or languages will add there own threads like feature, that is written to take advantage of some knowledge of the environment, for example a GUI environment could implement some thread functionality which switch between user threads on each event loop.
A game library could have some thread like behaviour for characters. Sometimes the user thread like behaviour can be implemented in a different way, for example I work with cocoa a lot, and it has a timer mechanism which executes your code every x number of seconds, use fraction of a seconds and it like a thread. Ruby has a yield feature which is like cooperative threads. The advantage of user threads is they can switch at more predictable times. With kernel thread every time a thread starts up again, it needs to load any data it was working on, this can take time, with user threads you can switch when you have finished working on some data, so it doesn't need to be reloaded.
I haven't come across user threads that look the same as kernel threads, only thread like mechanisms like the timer, though I have read about them in older text books so I wonder if they were something that was more popular in the past but with the rise of true multithreaded OS's (modern Windows and Mac OS X) and more powerful hardware I wonder if they have gone out of favour.

Resources