FireDAC amBlocking vs amNonBlocking command execution - multithreading

I use FireDAC mostly from background threads with occasional use from the main GUI thread.
According to the docs, there are 4 possible execution modes, from which only 2 seem to be appropriate in my case:
amBlocking The calling thread and GUI are blocked until an action is finished.
This one is the default and seem to be working fine. Although I'm not happy that it says "and GUI are blocked" - I don't need to block the GUI while background thread does the job. This sort of defeats the purpose of the threads. It can also lead to non-obvious deadlocks.
amNonBlocking The calling thread is blocked until an action is finished. The GUI is not blocked.
This mode seems more appropriate, as it blocks only the calling thread, and this appears to be what I need. But in practice, it's not. From time to time the call fails with exception
EFDException [FireDAC][Phys][SQLite]-326. Cannot perform the action, because the previous action is in progress.
All calls to FireDAC across all threads are serialized with a critical section - according to docs this is enough for thread safe operation of FireDAC. All datasets/queries are closed before critical section is released.
The main question is, what execution mode to choose?
Sub-question is - is it a bug in FireDAC and amNonBlocking is broken?

In case anyone has the same problem, the solution is as follows, before any operation with a database, call:
if GetCurrentThreadId = MainThreadID then
FDConn.ResourceOptions.CmdExecMode := amBlocking
else
FDConn.ResourceOptions.CmdExecMode := amNonBlocking;

Related

How to safely use [NSTask waitUntilExit] off the main thread?

I have a multithreaded program that needs to run many executables at once and wait for their results.
I use [nstask waitUntilExit] in an NSOperationQueue that runs it on non-main thread (running NSTask on the main thread is completely out of the question).
My program randomly crashes or runs into assertion failures, and the crash stacks always point to the runloop run by waitUntilExit, which executes various callbacks and handlers, including—IMHO incorrectly—KVO and bindings updating the UI, which causes them to run on non-main thread (It's probably the problem described by Mike Ash)
How can I safely use waitUntilExit?
Is it a problem of waitUntilExit being essentially unusable, or do I need to do something special (apart from explicitly scheduling my callbacks on the main thread) when using KVO and IB bindings to prevent them from being handled on a wrong thread running waitUntilExit?
As Mike Ash points out, you just can't call waitUntilExit on a random runloop. It's convenient, but it doesn't work. You have to include "doesn't work" in your computation of "is this actually convenient?"
You can, however, use terminationHandler in 10.7+. It does not pump the runloop, so shouldn't create this problem. You can recreate waitUntilExit with something along these lines (untested; probably doesn't compile):
dispatch_group group = dispatch_group_create();
dispatch_group_enter(group);
task.terminationHandler = ^{ dispatch_group_leave(group); };
[task launch];
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
// If not using ARC:
dispatch_release(group);
Hard to say without general context of what are you doing...
In general you can't update interface from the non main threads. So if you observe some KVO notifications of NSTasks in non main thread and update UI then you are wrong.
In that case you can fix situation by simple
-[NSObject performSelectorOnMainThread:];
or similar when you want to update UI.
But as for me more grace solution:
write separated NSOperationQueue with maxConcurentOperationsCount = 1 (so FIFO queue) and write subclass of NSOperation which will execute NSTask and update UI through delegate methods. In that way you will control amount of executing tasks in application. (or you may stop all of them or else)
But high level solution for your problem I think will be writing privileged helper tool. Using this approach you will get 2 main benefits: your NSTask's will be executes in separated process and you will have root privilegies for executing your tasks.
I hope my answer covers your problem.

NSURLSession dataTaskWithURL

I am using NSURLSession dataTaskWithURL:completionHandler. It looks like completionHandler is executed in a thread which is different than the thread(in my case, it's the main thread) which calls dataTaskWithURL. So my question is, since it is asynchronized, is it possible that the main thread exit, but the completionHandler thread is still running since the response has not come back, which is the case I am trying to avoid. If this could happen, how should I solve the problem? BTW, I am building this as a framework, not an application.Thanks.
In the first part of your question you seem un-sure that the completion handler is running on a different thread. To confirm this let's look at the NSURLSession Class Reference. If we look at the "Creating a Session" section we can see in the description for the following method the answer.
+ sessionWithConfiguration:delegate:delegateQueue:
Swift
init(configuration configuration: NSURLSessionConfiguration,
delegate delegate: NSURLSessionDelegate?,
delegateQueue queue: NSOperationQueue?)
Objective-C
+ (NSURLSession *)sessionWithConfiguration:(NSURLSessionConfiguration *)configuration
delegate:(id<NSURLSessionDelegate>)delegate
delegateQueue:(NSOperationQueue *)queue
In the parameters table for the NSOperationQueue queue parameter is the following quote.
An operation queue for scheduling the delegate calls and completion handlers. The queue need not be a serial queue. If nil, the session creates a serial operation queue for performing all delegate method calls and completion handler calls.
So we can see the default behavior is to provide a queue whether from the developer or as the default class behavior. Again we can see this in the comments for the method + sessionWithConfiguration:
Discussion
Calling this method is equivalent to calling
sessionWithConfiguration:delegate:delegateQueue: with a nil delegate
and queue.
If you would like a more information you should read Apple's Concurrency Programming Guide. This is also useful in understanding Apple's approach to threading in general.
So the completion handler from - dataTaskWithURL:completionHandler: is running on a different queue, with queues normally providing their own thread(s). This leads the main component of your question. Can the main thread exit, while the completion handler is still running?
The concise answer is no, but why?
To answer this answer this we again turn to Apple's documentation, to a document that everyone should read early in their app developer career!
The App Programming Guide
The Main Run Loop
An app’s main run loop processes all user-related events. The
UIApplication object sets up the main run loop at launch time and uses
it to process events and handle updates to view-based interfaces. As
the name suggests, the main run loop executes on the app’s main
thread. This behavior ensures that user-related events are processed
serially in the order in which they were received.
All of the user interact happens on the main thread - no main thread, no main run loop, no app! So the possible condition you question mentions should never exist!
Apple seems more concerned with you doing background work on the main thread. Checkout the section "Move Work off the Main Thread"...
Be sure to limit the type of work you do on the main thread of your
app. The main thread is where your app handles touch events and other
user input. To ensure that your app is always responsive to the user,
you should never use the main thread to perform long-running or
potentially unbounded tasks, such as tasks that access the network.
Instead, you should always move those tasks onto background threads.
The preferred way to do so is to use Grand Central Dispatch (GCD) or
NSOperation objects to perform tasks asynchronously.
I know this answer is long winded, but I felt the need to offer insight and detail in answering your question - "the why" is just as important and it was good review :)
NSURLSessionTasks always run in background by default that's why we have completion handler which can be used when we get response from Web service.
If you don't get any response explore your request URL and whether HTTPHeaderFields are set properly.
Paste your code so that we can help it
I just asked the same question. Then figured out the answer. The thread of the completion handler is setup in the init of the NSURLSession.
From the documentation:
init(configuration configuration: NSURLSessionConfiguration,
delegate delegate: NSURLSessionDelegate?,
delegateQueue queue: NSOperationQueue?)`
queue - A queue for scheduling the delegate calls and completion handlers. If nil, the session creates a serial operation queue for performing all delegate method calls and completion handler calls.*
My code that sets up for completion on main thread:
var session = NSURLSession(configuration: configuration, delegate:nil, delegateQueue:NSOperationQueue.mainQueue())
(Shown in Swift, Objective-C the same) Maybe post more code if this does not solve.

Is the first thread that gets to run inside a Win32 process the "primary thread"? Need to understand the semantics

I create a process using CreateProcess() with the CREATE_SUSPENDED and then go ahead to create a little patch of code inside the remote process to load a DLL and call a function (exported by that DLL), using VirtualAllocEx() (with ..., MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE), WriteProcessMemory(), then call FlushInstructionCache() on that patch of memory with the code.
After that I call CreateRemoteThread() to invoke that code, creating me a hRemoteThread. I have verified that the remote code works as intended. Note: this code simply returns, it does not call any APIs other than LoadLibrary() and GetProcAddress(), followed by calling the exported stub function that currently simply returns a value that will then get passed on as the exit status of the thread.
Now comes the peculiar observation: remember that the PROCESS_INFORMATION::hThread is still suspended. When I simply ignore hRemoteThread's exit code and also don't wait for it to exit, all goes "fine". The routine that calls CreateRemoteThread() returns and PROCESS_INFORMATION::hThread gets resumed and the (remote) program actually gets to run.
However, if I call WaitForSingleObject(hRemoteThread, INFINITE) or do the following (which has the same effect):
DWORD exitCode = STILL_ACTIVE;
while(STILL_ACTIVE == exitCode)
{
Sleep(500);
if(!GetExitCodeThread(hRemoteThread, &exitCode))
break;
}
followed by CloseHandle() this leads to hRemoteThread finishing before PROCESS_INFORMATION::hThread gets resumed and the process simply "disappears". It is enough to allow hRemoteThread to finish somehow without PROCESS_INFORMATION::hThread to cause the process to die.
This looks suspiciously like a race condition, since under certain circumstances hRemoteThread may still be faster and the process would likely still "disappear", even if I leave the code as is.
Does that imply that the first thread that gets to run within a process becomes automatically the primary thread and that there are special rules for that primary thread?
I was always under the impression that a process finishes when its last thread dies, not when a particular thread dies.
Also note: there is no call to ExitProcess() involved here in any way, because hRemoteThread simply returns and PROCESS_INFORMATION::hThread is still suspended when I wait for hRemoteThread to return.
This happens on Windows XP SP3, 32bit.
Edit: I have just tried Sysinternals Process Monitor to see what's happening and I could verify my observations from before. The injected code does not crash or anything, instead I get to see that if I don't wait for the thread it doesn't exit before I close the program where the code got injected. I'm thinking whether the call to CloseHandle(hRemoteThread) should be postponed or something ...
Edit+1: it's not CloseHandle(). If I leave that out just for a test, the behavior doesn't change when waiting for the thread to finish.
The first thread to run isn't special.
For example, create a console app which creates a suspended thread and terminates the original thread (by calling ExitThread). This process never terminates (on Windows 7 anyway).
Or make the new thread wait for five seconds then exit. As expected, the process will live for five seconds and exit when the secondary thread terminates.
I don't know what's happening with your example. The easiest way to avoid the race is to make the new thread resume the original thread.
Speculating now, I do wonder if what you're doing isn't likely to cause problems anyway. For example, what happens to all the DllMain calls for the implicitly loaded DLLs? Are they unexpectedly happening on the wrong thread, are they being skipped, or are they postponed until after your code has run and the main thread starts?
Odds are good that the thread with the main (or equivalent) function calls ExitProcess (either explicitly or in its runtime library). ExitProcess, well, exits the entire process, including killing all threads. Since the main thread doesn't know about your injected code, it doesn't wait for it to finish.
I don't know that there's a good way to make the main thread wait for yours to complete...

InvokeOnMainThread() not necessarily invoking on main thread - bug or feature?

I'm using a Timer and let it perform regular checks. If the test condition is true, I start a thread and let it do what it has to do.
If within that thread I want to change the UI I'm using InvokeOnMainThread(). But as the thread was triggered from a Timer which already is a seprate thread, the InvokeOnMainThread() will invoke things on the Timer's thread and not on the real main thread. I work around it by boxing two InvokeOnMainThread() calls.
Is this working as intended or is it a bug in the Mono framework?
Is the main thread defined as the one who triggered the current thread or is it supposed to return the "root" thread?
NSObject.InvokeOnMainThread is, mostly, a wrapper around performSelectorOnMainThread:withObject:waitUntilDone:
Quote from documentation:
You can use this method to deliver messages to the main thread of your application. The main thread encompasses the application’s main run loop, and is where the NSApplication object receives events.
We can have a deeper look into it (seems weird) if you fill a bug report on http://bugzilla.xamarin.com along with a self-contained test case.

Can I execute TDataSet.DisableControls in worker thread without wrapping it with Synchronize()?

First of all, I am not sure that it is a good design to allow worker thread to disable controls. However, I am curious can I do it safely without synchronization with GUI?
The code in TDataSet looks like this:
procedure TDataSet.DisableControls;
begin
if FDisableCount = 0 then
begin
FDisableState := FState;
FEnableEvent := deDataSetChange;
end;
Inc(FDisableCount);
end;
So it looks safe to do. The situation would be different in case of EnableControls. But DisableControls seems to only increase lock counter and assigning event which is fired up during EnableControls.
What do you think?
It looks safe to do so, but things may go wrong because these flags are used in code that may be in the middle of being executed at the moment you call this method from your thread.
I would Synchronise the call to DisableControls, because you want your thread to start using this dataset only if no controls are using it.
The call to EnableControls can be synchronised too, or you can post a message to the form using PostMessage. That way, the thread doesn't have to wait for the main thread.
But my gut feelings tells me that is may be better to not use the same dataset for the GUI and the thread at all.
Without having looked up the actual code: It might be safe, as long as you can be sure that the main thread currently does not access FDisableCount, FDisableState and FEnableEvent. There is the possibility of a race condition here.
I would still recommend that you call DisableControls from within the main thread.

Resources