Functor for GHC.Generics Comp1 (:.:) - haskell

I'm stuck with Functor instance for composition of other functors in haskell.
data Cmps f g x = Cmps {getCmps :: f (g x)} deriving (Eq,Show)
--
instance (Functor f, Functor g) => Functor (Cmps f g) where
-- fmap :: (a -> b) -> (Cmps f g) a -> (Cmps f g) b
fmap = ?
In GHC.Generics functor just derived with {-# LANGUAGE DeriveFunctor #-}
-- | Composition of functors
infixr 7 :.:
newtype (:.:) f (g :: * -> *) (p :: *) = Comp1 { unComp1 :: f (g p) }
deriving (Eq, Ord, Read, Show, Functor, Generic, Generic1)`
I can't get some like fmap h (Cmps f g x) = Cmps f g (h x) becouse of error
The constructor ‘Cmps’ should have 1 argument, but has been given 3, and something like fmap h (f (g x)) don't work too. How can I get f, g and x from Cmps type in fmap implementation?

Consolidating the remarks by Li-yao Xia and orlan as an answer.
In your Cmps definition...
data Cmps f g x = Cmps {getCmps :: f (g x)} deriving (Eq,Show)
... f, g and x are type variables; they do not stand for fields. Cmps has a single field, of type f (g x). Accordingly, the fmap implementation for it should be:
instance (Functor f, Functor g) => Functor (Cmps f g) where
-- fmap :: (a -> b) -> (Cmps f g) a -> (Cmps f g) b
fmap h (Cmps x) = Cmps (fmap (fmap h) x)
If you want to compare that with an equivalent instance in the core libraries which is not derived, have a look at Compose from Data.Functor.Compose.

Related

How can I instantiate Functor for this data type?

How Can I instantiate the following data types to be Functor ?
data LiftItOut f a = LiftItOut (f a)
data Parappa f g a = DaWrappa (f a) (g a)
data IgnoreOne f g a b = IgnoringSomething (f a) (g b)
data Notorious g o a t = Notorious (g o) (g a) (g t)
There are not very clear for the declaration themselves, inside the parantheses in the right member, is that function application (I ve never seen that, only basic type constructors)? I am new to haskell and I am just trying to understand the basics.
Ask the compiler to show you how. Use the command line flag -ddump-deriv, enable the DeriveFunctor language extension, and put deriving Functor at the end of each type definition, and then the compiler will print Functor instances for each of them:
==================== Derived instances ====================
Derived class instances:
instance GHC.Base.Functor g =>
GHC.Base.Functor (Main.Notorious g o a) where
GHC.Base.fmap f_aK1 (Main.Notorious a1_aK2 a2_aK3 a3_aK4)
= Main.Notorious a1_aK2 a2_aK3 (GHC.Base.fmap f_aK1 a3_aK4)
(GHC.Base.<$) z_aK5 (Main.Notorious a1_aK6 a2_aK7 a3_aK8)
= Main.Notorious a1_aK6 a2_aK7 ((GHC.Base.<$) z_aK5 a3_aK8)
instance forall k (f :: k -> *) (g :: * -> *) (a :: k).
GHC.Base.Functor g =>
GHC.Base.Functor (Main.IgnoreOne f g a) where
GHC.Base.fmap f_aK9 (Main.IgnoringSomething a1_aKa a2_aKb)
= Main.IgnoringSomething a1_aKa (GHC.Base.fmap f_aK9 a2_aKb)
(GHC.Base.<$) z_aKc (Main.IgnoringSomething a1_aKd a2_aKe)
= Main.IgnoringSomething a1_aKd ((GHC.Base.<$) z_aKc a2_aKe)
instance (GHC.Base.Functor f, GHC.Base.Functor g) =>
GHC.Base.Functor (Main.Parappa f g) where
GHC.Base.fmap f_aKf (Main.DaWrappa a1_aKg a2_aKh)
= Main.DaWrappa
(GHC.Base.fmap f_aKf a1_aKg) (GHC.Base.fmap f_aKf a2_aKh)
(GHC.Base.<$) z_aKi (Main.DaWrappa a1_aKj a2_aKk)
= Main.DaWrappa
((GHC.Base.<$) z_aKi a1_aKj) ((GHC.Base.<$) z_aKi a2_aKk)
instance GHC.Base.Functor f =>
GHC.Base.Functor (Main.LiftItOut f) where
GHC.Base.fmap f_aKl (Main.LiftItOut a1_aKm)
= Main.LiftItOut (GHC.Base.fmap f_aKl a1_aKm)
(GHC.Base.<$) z_aKn (Main.LiftItOut a1_aKo)
= Main.LiftItOut ((GHC.Base.<$) z_aKn a1_aKo)
That's kind of messy-looking, but it's rather straightforward to clean up:
data LiftItOut f a = LiftItOut (f a)
instance Functor f => Functor (LiftItOut f) where
fmap f (LiftItOut a) = LiftItOut (fmap f a)
data Parappa f g a = DaWrappa (f a) (g a)
instance (Functor f, Functor g) => Functor (Parappa f g) where
fmap f (DaWrappa a1 a2) = DaWrappa (fmap f a1) (fmap f a2)
data IgnoreOne f g a b = IgnoringSomething (f a) (g b)
instance Functor g => Functor (IgnoreOne f g a) where
fmap f (IgnoringSomething a1 a2) = IgnoringSomething a1 (fmap f a2)
data Notorious g o a t = Notorious (g o) (g a) (g t)
instance Functor g => Functor (Notorious g o a) where
fmap f (Notorious a1 a2 a3) = Notorious a1 a2 (fmap f a3)
Also worth noting that your LiftItOut is isomorphic to Ap and IdentityT, and your Parappa is isomorphic to Product.
A functor f is a type constructor with an associated function fmap that from a function of type (a -> b) creates a function of type (f a) -> (f b) which applies it "on the inside": (the parentheses are redundant and are used for clarity/emphasis only)
fmap :: (Functor f) => ( a -> b)
-> (f a) -> (f b)
-- i.e. g :: a -> b -- from this
-- --------------------------
-- fmap g :: (f a) -> (f b) -- we get this
(read it "fmap of g from a to b goes from f a to f b").
Put differently, something being a "Functor" means that it can be substituted for f in
fmap id (x :: f a) = x
(fmap g . fmap h) = fmap (g . h)
so that the expressions involved make sense (i.e. are well formed, i.e. have a type), and, importantly, the above equations hold -- they are in fact the two "Functor laws".
You have
data LiftItOut h a = MkLiftItOut (h a) -- "Mk..." for "Make..."
------------- ----------- ------
new type, data type of the data constructor's
defined here constructor one argument (one field)
This means h a is a type of a thing which can serve as an argument to MkLiftItOut. For example, Maybe Int (i.e. h ~ Maybe and a ~ Int), [(Float,String)] (i.e. h ~ [] and a ~ (Float,String)), etc.
h, a are type variables -- meaning, they can be replaced by any specific type so that the whole syntactic expressions make sense.
These syntactic expressions include MkLiftItOut x which is a thing of type LiftItOut h a provided x is a thing of type h a; LiftItOut h a which is a type; h a which is a type of a thing which can appear as an argument to MkLiftItOut. Thus we can have in our programs
v1 = MkLiftItOut ([1,2,3] :: [] Int ) :: LiftItOut [] Int
v2 = MkLiftItOut ((Just "") :: Maybe String) :: LiftItOut Maybe String
v3 = MkLiftItOut (Nothing :: Maybe () ) :: LiftItOut Maybe ()
.....
etc. Then we have
ghci> :i Functor
class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a
..........
This means that Functor f => (f a) is a type of a thing which a variable can reference, e.g.
-- f a
v4 = Just 4 :: Maybe Int
v41 = 4 :: Int
v5 = [4.4, 5.5] :: [] Float
v51 = 4.4 :: Float
v52 = 5.5 :: Float
v6 = (1,"a") :: ((,) Int) String -- or simpler, `(Int, String)`
v61 = "a" :: String
v7 = (\x -> 7) :: ((->) Int) Int -- or simpler, `Int -> Int`
Here a is a type of a thing, f a is a type of a thing, f is a type which, when given a type of a thing, becomes a type of a thing; etc. There's no thing which can be referenced by a variable which would have the type f on its own.
All the above fs are instances of the Functor typeclass. This means that somewhere in the libraries there are definitions of
instance Functor Maybe where ....
instance Functor [] where ....
instance Functor ((,) a) where ....
instance Functor ((->) r) where ....
Notice we always have the f, and the a. f in particular can be made of more than one constituents, but a is always some one type.
Thus in this case we must have
instance Functor (LiftItOut h) where ....
(...why? do convince yourself in this; see how all the above statements apply and are correct)
Then the actual definition must be
-- fmap :: (a -> b) -> f a -> f b
-- fmap :: (a -> b) -> LiftItOut h a -> LiftItOut h b
fmap g (MkLiftItOut x ) = (MkLiftItOut y )
where
y = ....
In particular, we'll have
-- g :: a -> b -- x :: (h a) -- y :: (h b)
and we don't even know what the h is.
How can we solve this? How can we construct an h b-type of thing from an h a-type of thing when we don't even know anything about h, a, nor b?
We can't.
But what if we knew that h is also a Functor?
instance (Functor h) => Functor (LiftItOut h) where
-- fmap :: (a -> b) -> (f a) -> (f b)
-- fmap :: (a -> b) -> (LiftItOut h a) -> (LiftItOut h b)
fmap g (MkLiftItOut x ) = (MkLiftItOut y )
where
-- fmap :: (a -> b) -> (h a) -> (h b)
y = ....
Hopefully you can finish this up. And also do the other types in your question as well. If not, post a new question for the one type with which you might have any further problems.

Is this type a valid "rank-2 bifunctor"?

The rank2classes package provides a version of Functor for which the mapped functions seem to be natural transformations between type constructors.
Following that idea, here's a rank-2 version of Bifunctor:
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneKindSignatures #-}
import Data.Kind
type Rank2Bifunctor :: ((Type -> Type) -> (Type -> Type) -> Type) -> Constraint
class Rank2Bifunctor b where
rank2bimap ::
(forall x. p x -> p' x) -> (forall x. q x -> q' x) -> b p q -> b p' q'
It seems clear that this type Foo can be given a Rank2Bifunctor instance:
data Foo f g = Foo (f Int) (g Int)
instance Rank2Bifunctor Foo where
rank2bimap tleft tright (Foo f g) = Foo (tleft f) (tright g)
But what about this Bar type which nests f and g:
data Bar f g = Bar (f (g Int))
For starters, it seems that we would need to require Functor p in the signature of rank2bimap, to be able to transform the g inside the f.
Is Bar a valid "rank-2 bifunctor"?
Indeed that's not an instance of your Bifunctor, since the lack of constraint allows you to pick a contravariant functor for f and then rank2bimap would amount roughly to implement fmap for f:
rank2bimap id :: (g ~> g') -> Bar f g -> Bar f g' -- covariance of f, kinda (since Bar f g = f (g Int))
type f ~> f' = (forall x. f x -> f' x)
If you add the requirement that f and g (optional here) be functors, then you do get a bifunctor:
rank2bimap :: (Functor f, Functor g) => (f ~> f') -> (g ~> g') -> Bar f g -> Bar f' g'
In particular, to prove the bifunctor laws, you will need the free theorem of f ~> f', assuming f and f' are functors, then n :: f ~> f' satisfies that for all phi, fmap phi . n = n . fmap phi.

Composing Applicatives

I'm reading through Chapter 25 (Composing Types) of the haskellbook, and wish to understand applicative composition more completely
The author provides a type to embody type composition:
newtype Compose f g a =
Compose { getCompose :: f (g a) }
deriving (Eq, Show)
and supplies the functor instance for this type:
instance (Functor f, Functor g) =>
Functor (Compose f g) where
fmap f (Compose fga) =
Compose $ (fmap . fmap) f fga
But the Applicative instance is left as an exercise to the reader:
instance (Applicative f, Applicative g) =>
Applicative (Compose f g) where
-- pure :: a -> Compose f g a
pure = Compose . pure . pure
-- (<*>) :: Compose f g (a -> b)
-- -> Compose f g a
-- -> Compose f g b
Compose fgf <*> Compose fgx = undefined
I can cheat and look the answer up online... The source for Data.Functor.Compose provides the applicative instance definition:
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
but I'm having trouble understanding what's going on here. According to type signatures, both f and x are wrapped up in two layers of applicative structure. The road block I seem to be hitting though is understanding what's going on with this bit: (<*>) <$> f. I will probably have follow up questions, but they probably depend on how that expression is evaluated. Is it saying "fmap <*> over f" or "apply <$> to f"?
Please help to arrive at an intuitive understanding of what's happening here.
Thanks! :)
Consider the expression a <$> b <*> c. It means take the function a, and map it over the functor b, which will yield a new functor, and then map that new functor over the functor c.
First, imagine that a is (\x y -> x + y), b is Just 3, and c is Just 5. a <$> b then evaluates to Just (\y -> 3 + y), and a <$> b <*> c then evaluates to Just 8.
(If what's before here doesn't make sense, then you should try to understand single layers of applicatives further before you try to understand multiple layers of them.)
Similarly, in your case, a is (<*>), b is f, and c is x. If you were to choose suitable values for f and x, you'd see that they can be easily evaluated as well (though be sure to keep your layers distinct; the (<*>) in your case belongs to the inner Applicative, whereas the <$> and <*> belong to the outer one).
Rather than <*>, you can define liftA2.
import Control.Applicative (Applicative (..))
newtype Compose f g a = Compose
{ getCompose :: f (g a) }
deriving Functor
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure a = Compose (pure (pure a))
-- liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c
liftA2 f (Compose fga) (Compose fgb) = Compose _1
We have fga :: f (g a) and fgb :: f (g b) and we need _1 :: f (g c). Since f is applicative, we can combine those two values using liftA2:
liftA2 f (Compose fga) (Compose fgb) = Compose (liftA2 _2 fga fgb)
Now we need
_2 :: g a -> g b -> g c
Since g is also applicative, we can use its liftA2 as well:
liftA2 f (Compose fga) (Compose fgb) = Compose (liftA2 (liftA2 f) fga fgb)
This pattern of lifting liftA2 applications is useful for other things too. Generally speaking,
liftA2 . liftA2 :: (Applicative f, Applicative g) => (a -> b -> c) -> f (g a) -> f (g b) -> f (g c)
liftA2 . liftA2 . liftA2
:: (Applicative f, Applicative g, Applicative h)
=> (a -> b -> c) -> f (g (h a)) -> f (g (h b)) -> f (g (h c))

Universal Quantification in Haskell Instance Contexts?

Original Question
I would like to make the following work:
class Functor2 c where
fmap2 :: (a->b) -> c x a -> c x b
instance Functor (c x) => Functor2 c where
fmap2 = fmap
However I get the error:
Could not deduce (Functor (c x1)) arising from a use of `fmap'
from the context (Functor (c x))
How can I do it?
My use case
I want to use the Arrow methods (and sugar, etc) for my Applicative instances. More specifically I want:
newtype Wrap f g a b = W { unwrap :: ( f (g a b) ) }
instance (Category g, "Forall x." Applicative (g x), Applicative f) => Arrow (Wrap f g)
This instance would automatically follow from these (already working) instances:
instance (Category g, Applicative f) => Category (Wrap f g) where
id = W $ pure id
(W x) . (W y) = W $ liftA2 (.) x y
instance (Applicative (g x), Applicative f) => Functor (Wrap f g x) where
fmap f = W . fmap (fmap f) . unwrap
instance (Applicative (g x), Applicative f) => Applicative (Wrap f g x) where
pure = W . pure . pure
(W ab) <*> (W a) = W $ pure (<*>) <*> ab <*> a
if I could get this one to work:
instance (Category c, "Forall x." Applicative (c x)) => Arrow c where
arr f = (pure f) <*> id
first a = pure (,) <*> (arr fst >>> a) <*> (arr snd)
The types of arr and first check out in the compiler. The problem is the required "Forall x.", which I do not know how to state in Haskell.
An easy example for such a g is ->: Category (->) and Applicative ((->) x) for all x.
This does not really achieve your goal, but maybe it could be a step forward.
Your forall x. Functor (c x) is written AllFunctor2 c in this approach.
The main drawback is that you have to provide an instance to every functor you want to put in that class.
{-# LANGUAGE GADTs, ScopedTypeVariables #-}
data Ftor f where
Ftor :: Functor f => Ftor f
class AllFunctor2 c where
allFtor2 :: Ftor (c a)
instance AllFunctor2 (->) where
allFtor2 = Ftor
fmap2 :: AllFunctor2 c => (a->b) -> c x a -> c x b
fmap2 f (x :: c x a) = case allFtor2 :: Ftor (c x) of Ftor -> fmap f x
Probably the above is not so different from providing instances to Functor2 directly:
class Functor2 c where
fmap2 :: (a->b) -> c x a -> c x b
instance Functor2 (->) where
fmap2 = fmap

How to construct an Applicative instance with constraints (similarly to constructing Monad instances using ContT)

This question deals with constructing a proper Monad instance from something that is a monad, but only under certain constraints - for example Set. The trick is to wrap it into ContT, which defers the constraints to wrapping/unwrapping its values.
Now I'd like to do the same with Applicatives. In particular, I have an Applicative instance whose pure has a type-class constraint. Is there a similar trick how to construct a valid Applicative instance?
(Is there "the mother of all applicative functors" just as there is for monads?)
What may be the most consistent way available is starting from Category, where it's quite natural to have a restriction to objects: Object!
class Category k where
type Object k :: * -> Constraint
id :: Object k a => k a a
(.) :: (Object k a, Object k b, Object k c)
=> k b c -> k a b -> k a c
Then we define functors similar to how Edward does it
class (Category r, Category t) => Functor f r t | f r -> t, f t -> r where
fmap :: (Object r a, Object t (f a), Object r b, Object t (f b))
=> r a b -> t (f a) (f b)
All of this works nicely and is implemented in the constrained-categories library, which – shame on me! – still isn't on Hackage.
Applicative is unfortunately a bit less straightforward to do. Mathematically, these are monoidal functors, so we first need monoidal categories. categories has that class, but it doesn't work with the constraint-based version because our objects are always anything of kind * with a constraint. So what I did is make up a Curry class, which kind of approximates this.
Then, we can do Monoidal functors:
class (Functor f r t, Curry r, Curry t) => Monoidal f r t where
pure :: (Object r a, Object t (f a)) => a `t` f a
fzipWith :: (PairObject r a b, Object r c, PairObject t (f a) (f b), Object t (f c))
=> r (a, b) c -> t (f a, f b) (f c)
This is actually equivalent to Applicative when we have proper closed cartesian categories. In the constrained-categories version, the signatures unfortunately look very horrible:
(<*>) :: ( Applicative f r t
, MorphObject r a b, Object r (r a b)
, MorphObject t (f a) (f b), Object t (t (f a) (f b)), Object t (f (r a b))
, PairObject r (r a b) a, PairObject t (f (r a b)) (f a)
, Object r a, Object r b, Object t (f a), Object t (f b))
=> f (r a b) `t` t (f a) (f b)
Still, it actually works – for the unconstrained case, duh! I haven't yet found a convenient way to use it with nontrivial constraints.
But again, Applicative is equivalent to Monoidal, and that can be used as demonstrated in the Set example.
I'm not sure the notion of "restricted applicative" is unique, as different presentations are not isomorphic. That said here is one and something at least somewhat along the lines of Codensity. The idea is to have a "free functor" together with a unit
{-# LANGUAGE TypeFamilies, ConstraintKinds, ExistentialQuantification #-}
import GHC.Prim (Constraint)
import Control.Applicative
class RFunctor f where
type C f :: * -> Constraint
rfmap :: C f b => (a -> b) -> f a -> f b
class RFunctor f => RApplicative f where
rpure :: C f a => a -> f a
rzip :: f a -> f b -> f (a,b)
data UAp f a
= Pure a
| forall b. Embed (f b) (b -> a)
toUAp :: C f a => f a -> UAp f a
toUAp x = Embed x id
fromUAp :: (RApplicative f, C f a) => UAp f a -> f a
fromUAp (Pure x) = rpure x
fromUAp (Embed x f) = rfmap f x
zipUAp :: RApplicative f => UAp f a -> UAp f b -> UAp f (a,b)
zipUAp (Pure a) (Pure b) = Pure (a,b)
zipUAp (Pure a) (Embed b f) = Embed b (\x -> (a,f x))
zipUAp (Embed a f) (Pure b) = Embed a (\x -> (f x,b))
zipUAp (Embed a f) (Embed b g) = Embed (rzip a b) (\(x,y) -> (f x,g y))
instance Functor (UAp f) where
fmap f (Pure a) = Pure (f a)
fmap f (Embed a g) = Embed a (f . g)
instance RApplicative f => Applicative (UAp f) where
pure = Pure
af <*> ax = fmap (\(f,x) -> f x) $ zipUAp af ax
EDIT: Fixed some bugs. That is what happens when you don't compile before posting.
Because every Monad is a Functor, you can use the same ContT trick.
pure becomes return
fmap f x becomes x >>= (return . f)

Resources