groupby, count and average in numpy, pandas in python - python-3.x

I have a dataframe that looks like this:
userId movieId rating
0 1 31 2.5
1 1 1029 3.0
2 1 3671 3.0
3 2 10 4.0
4 2 17 5.0
5 3 60 3.0
6 3 110 4.0
7 3 247 3.5
8 4 10 4.0
9 4 112 5.0
10 5 3 4.0
11 5 39 4.0
12 5 104 4.0
I need to get a dataframe which has unique userId, number of ratings by the user and the average rating by the user as shown below:
userId count mean
0 1 3 2.83
1 2 2 4.5
2 3 3 3.5
3 4 2 4.5
4 5 3 4.0
Can someone help?

df1 = df.groupby('userId')['rating'].agg(['count','mean']).reset_index()
print(df1)
userId count mean
0 1 3 2.833333
1 2 2 4.500000
2 3 3 3.500000
3 4 2 4.500000
4 5 3 4.000000

Drop movieId since we're not using it, groupby userId, and then apply the aggregation methods:
import pandas as pd
df = pd.DataFrame({'userId': [1,1,1,2,2,3,3,3,4,4,5,5,5],
'movieId':[31,1029,3671,10,17,60,110,247,10,112,3,39,104],
'rating':[2.5,3.0,3.0,4.0,5.0,3.0,4.0,3.5,4.0,5.0,4.0,4.0,4.0]})
df = df.drop('movieId', axis=1).groupby('userId').agg(['count','mean'])
print(df)
Which produces:
rating
count mean
userId
1 3 2.833333
2 2 4.500000
3 3 3.500000
4 2 4.500000
5 3 4.000000

Here's a NumPy based approach using the fact that userID column appears to be sorted -
unq, tags, count = np.unique(df.userId.values, return_inverse=1, return_counts=1)
mean_vals = np.bincount(tags, df.rating.values)/count
df_out = pd.DataFrame(np.c_[unq, count], columns = (('userID', 'count')))
df_out['mean'] = mean_vals
Sample run -
In [103]: df
Out[103]:
userId movieId rating
0 1 31 2.5
1 1 1029 3.0
2 1 3671 3.0
3 2 10 4.0
4 2 17 5.0
5 3 60 3.0
6 3 110 4.0
7 3 247 3.5
8 4 10 4.0
9 4 112 5.0
10 5 3 4.0
11 5 39 4.0
12 5 104 4.0
In [104]: df_out
Out[104]:
userID count mean
0 1 3 2.833333
1 2 2 4.500000
2 3 3 3.500000
3 4 2 4.500000
4 5 3 4.000000

Related

Replacing constant values with nan

import pandas as pd
data={'col1':[1,3,3,1,2,3,2,2]}
df=pd.DataFrame(data,columns=['col1'])
print df
col1
0 1
1 3
2 3
3 1
4 2
5 3
6 2
7 2
Expected result:
Col1 newCol1
0 1. 1
1 3. 3
2 3. NaN
3. 1. 1
4 2. 2
5 3. 3
6 2. 2
7. 2. Nan
Try where combine with shift
df['col2'] = df.col1.where(df.col1.ne(df.col1.shift()))
df
Out[191]:
col1 col2
0 1 1.0
1 3 3.0
2 3 NaN
3 1 1.0
4 2 2.0
5 3 3.0
6 2 2.0
7 2 NaN

shifting a column down in a pandas dataframe

I have data in the following way
A B C
1 2 3
2 5 6
7 8 9
I want to change the dataframe into
A B C
2 3
1 5 6
2 8 9
3
One way would be to add a blank row to the dataframe and then use shift
# input df:
A B C
0 1 2 3
1 2 5 6
2 7 8 9
df.loc[len(df.index), :] = None
df['A'] = df.A.shift(1)
print (df)
A B C
0 NaN 2.0 3.0
1 1.0 5.0 6.0
2 2.0 8.0 9.0
3 7.0 NaN NaN

Python: Summing every five rows of column b data and create a new column

I have a dataframe like below. I would like to sum row 0 to 4 (every 5 rows) and create another column with summed value ("new column"). My real dataframe has 263 rows so, last three rows every 12 rows will be sum of three rows only. How I can do this using Pandas/Python. I have started to learn Python recently. Thanks for any advice in advance!
My data patterns is more complex as I am using the index as one of my column values and it repeats like:
Row Data "new column"
0 5
1 1
2 3
3 3
4 2 14
5 4
6 8
7 1
8 2
9 1 16
10 0
11 2
12 3 5
0 3
1 1
2 2
3 3
4 2 11
5 2
6 6
7 2
8 2
9 1 13
10 1
11 0
12 1 2
...
259 50 89
260 1
261 4
262 5 10
I tried iterrows and groupby but can't make it work so far.
Use this:
df['new col'] = df.groupby(df.index // 5)['Data'].transform('sum')[lambda x: ~(x.duplicated(keep='last'))]
Output:
Data new col
0 5 NaN
1 1 NaN
2 3 NaN
3 3 NaN
4 2 14.0
5 4 NaN
6 8 NaN
7 1 NaN
8 2 NaN
9 1 16.0
Edit to handle updated question:
g = df.groupby(df.Row).cumcount()
df['new col'] = df.groupby([g, df.Row // 5])['Data']\
.transform('sum')[lambda x: ~(x.duplicated(keep='last'))]
Output:
Row Data new col
0 0 5 NaN
1 1 1 NaN
2 2 3 NaN
3 3 3 NaN
4 4 2 14.0
5 5 4 NaN
6 6 8 NaN
7 7 1 NaN
8 8 2 NaN
9 9 1 16.0
10 10 0 NaN
11 11 2 NaN
12 12 3 5.0
13 0 3 NaN
14 1 1 NaN
15 2 2 NaN
16 3 3 NaN
17 4 2 11.0
18 5 2 NaN
19 6 6 NaN
20 7 2 NaN
21 8 2 NaN
22 9 1 13.0
23 10 1 NaN
24 11 0 NaN
25 12 1 2.0

Transposing multi index dataframe in pandas

HID gen views
1 1 20
1 2 2532
1 3 276
1 4 1684
1 5 779
1 6 200
1 7 545
2 1 20
2 2 7478
2 3 750
2 4 7742
2 5 2643
2 6 208
2 7 585
3 1 21
3 2 4012
3 3 2019
3 4 1073
3 5 3372
3 6 8
3 7 1823
3 8 22
this is a sample section of a data frame, where HID and gen are indexes.
how can it be transformed like this
HID 1 2 3 4 5 6 7 8
1 20 2532 276 1684 779 200 545 nan
2 20 7478 750 7742 2643 208 585 nan
3 21 4012 2019 1073 3372 8 1823 22
Its called pivoting i.e
df.reset_index().pivot('HID','gen','views')
gen 1 2 3 4 5 6 7 8
HID
1 20.0 2532.0 276.0 1684.0 779.0 200.0 545.0 NaN
2 20.0 7478.0 750.0 7742.0 2643.0 208.0 585.0 NaN
3 21.0 4012.0 2019.0 1073.0 3372.0 8.0 1823.0 22.0
Use unstack:
df = df['views'].unstack()
If need also HID column add reset_index + rename_axis:
df = df['views'].unstack().reset_index().rename_axis(None, 1)
print (df)
HID 1 2 3 4 5 6 7 8
0 1 20.0 2532.0 276.0 1684.0 779.0 200.0 545.0 NaN
1 2 20.0 7478.0 750.0 7742.0 2643.0 208.0 585.0 NaN
2 3 21.0 4012.0 2019.0 1073.0 3372.0 8.0 1823.0 22.0

How to merge two dataframes with MultiIndex?

I have a frame looks like:
2015-12-30 2015-12-31
300100 am 1 3
pm 3 2
300200 am 5 1
pm 4 5
300300 am 2 6
pm 3 7
and the other frame looks like
2016-1-1 2016-1-2 2016-1-3 2016-1-4
300100 am 1 3 5 1
pm 3 2 4 5
300200 am 2 5 2 6
pm 5 1 3 7
300300 am 1 6 3 2
pm 3 7 2 3
300400 am 3 1 1 3
pm 2 5 5 2
300500 am 1 6 6 1
pm 5 7 7 5
Now I want to merge the two frames, and the frame after merge to be looked like this:
2015-12-30 2015-12-31 2016-1-1 2016-1-2 2016-1-3 2016-1-4
300100 am 1 3 1 3 5 1
pm 3 2 3 2 4 5
300200 am 5 1 2 5 2 6
pm 4 5 5 1 3 7
300300 am 2 6 1 6 3 2
pm 3 7 3 7 2 3
300400 am 3 1 1 3
pm 2 5 5 2
300500 am 1 6 6 1
pm 5 7 7 5
I tried pd.merge(frame1,frame2,right_index=True,left_index=True), but what it returned was not the desired format. Can anyone help? Thanks!
You can use concat:
print (pd.concat([frame1, frame2], axis=1))
2015-12-30 2015-12-31 1.1.2016 2.1.2016 3.1.2016 4.1.2016
300100 am 1.0 3.0 1 3 5 1
pm 3.0 2.0 3 2 4 5
300200 am 5.0 1.0 2 5 2 6
pm 4.0 5.0 5 1 3 7
300300 am 2.0 6.0 1 6 3 2
pm 3.0 7.0 3 7 2 3
300400 am NaN NaN 3 1 1 3
pm NaN NaN 2 5 5 2
300500 am NaN NaN 1 6 6 1
pm NaN NaN 5 7 7 5
Values in first and second column are converted to float, because NaN values convert int to float - see docs.
One possible solution is replace NaN by some int e.g. 0 and then convert to int:
print (pd.concat([frame1, frame2], axis=1)
.fillna(0)
.astype(int))
2015-12-30 2015-12-31 1.1.2016 2.1.2016 3.1.2016 4.1.2016
300100 am 1 3 1 3 5 1
pm 3 2 3 2 4 5
300200 am 5 1 2 5 2 6
pm 4 5 5 1 3 7
300300 am 2 6 1 6 3 2
pm 3 7 3 7 2 3
300400 am 0 0 3 1 1 3
pm 0 0 2 5 5 2
300500 am 0 0 1 6 6 1
pm 0 0 5 7 7 5
you can use join
frame1.join(frame2, how='outer')

Resources