Spark mechanism of launching executors - apache-spark

I know that upon spark application start the driver process starts executor processes on worker nodes. But how exactly does it do it (in low level terms of spark source code)?
What spark classes/methods implement that functionality? Can someone point me to those classes?

Looks at these two classes: StandaloneAppClient
and StandaloneSchedulerBackend
i hope it's helpful for you

Related

How are the task results being processed on Spark?

I am new to Spark and I am currently try to understand the architecture of spark.
As far as I know, the spark cluster manager assigns tasks to worker nodes and sends them partitions of the data. Once there, each worker node performs the transformations (like mapping etc.) on its own specific partition of the data.
What I don't understand is: where do all the results of these transformations from the various workers go to? are they being sent back to the cluster manager / driver and once there reduced (e.g. sum of values of each unique key)? If yes, is there a specific way this happens?
Would be nice if someone is able to enlighten me, neither the spark docs nor other Resources concerning the architecture haven't been able to do so.
Good question, I think you are asking how does a shuffle work...
Here is a good explanation.
When does shuffling occur in Apache Spark?

Deadlock when many spark jobs are concurrently scheduled

Using spark 2.4.4 running in YARN cluster mode with the spark FIFO scheduler.
I'm submitting multiple spark dataframe operations (i.e. writing data to S3) using a thread pool executor with a variable number of threads. This works fine if I have ~10 threads, but if I use hundreds of threads, there appears to be a deadlock, with no jobs being scheduled according to the Spark UI.
What factors control how many jobs can be scheduled concurrently? Driver resources (e.g. memory/cores)? Some other spark configuration settings?
EDIT:
Here's a brief synopsis of my code
ExecutorService pool = Executors.newFixedThreadPool(nThreads);
ExecutorCompletionService<Void> ecs = new ExecutorCompletionService<>(pool);
Dataset<Row> aHugeDf = spark.read.json(hundredsOfPaths);
List<Future<Void>> futures = listOfSeveralHundredThings
.stream()
.map(aThing -> ecs.submit(() -> {
df
.filter(col("some_column").equalTo(aThing))
.write()
.format("org.apache.hudi")
.options(writeOptions)
.save(outputPathFor(aThing));
return null;
}))
.collect(Collectors.toList());
IntStream.range(0, futures.size()).forEach(i -> ecs.poll(30, TimeUnit.MINUTES));
exec.shutdownNow();
At some point, as nThreads increases, spark no longer seems to be scheduling any jobs as evidenced by:
ecs.poll(...) timing out eventually
The Spark UI jobs tab showing no active jobs
The Spark UI executors tab showing no active tasks for any executor
The Spark UI SQL tab showing nThreads running queries with no running job ID's
My execution environment is
AWS EMR 5.28.1
Spark 2.4.4
Master node = m5.4xlarge
Core nodes = 3x rd5.24xlarge
spark.driver.cores=24
spark.driver.memory=32g
spark.executor.memory=21g
spark.scheduler.mode=FIFO
If possible write the output of the jobs to AWS Elastic MapReduce hdfs (to leverage on the almost instantaneous renames and better file IO of local hdfs) and add a dstcp step to move the files to S3, to save yourself all the troubles of handling the innards of an object store trying to be a filesystem. Also writing to local hdfs will allow you to enable speculation to control runaway tasks without falling into the deadlock traps associated with DirectOutputCommiter.
If you must use S3 as the output directory ensure that the following Spark configurations are set
spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2
spark.speculation false
Note: DirectParquetOutputCommitter is removed from Spark 2.0 due to the chance of data loss. Unfortunately until we have improved consistency from S3a we have to work with the workarounds. Things are improving with Hadoop 2.8
Avoid keynames in lexicographic order. One could use hashing/random prefixes or reverse date-time to get around.The trick is to name your keys hierarchically, putting the most common things you filter by on the left side of your key. And never have underscores in bucket names due to DNS issues.
Enabling fs.s3a.fast.upload upload parts of a single file to Amazon S3 in parallel
Refer these articles for more detail-
Setting spark.speculation in Spark 2.1.0 while writing to s3
https://medium.com/#subhojit20_27731/apache-spark-and-amazon-s3-gotchas-and-best-practices-a767242f3d98
IMO you're likely approaching this problem wrong. Unless you can guarantee that the number of tasks per job is very low, you're likely not going to get much performance improvement by parallelizing 100s of jobs at once. Your cluster can only support 300 tasks at once, assuming you're using the default parallelism of 200 thats only 1.5 jobs. I'd suggest rewriting your code to cap max concurrent queries at 10. I highly suspect that you have 300 queries with only a single task of several hundred actually running. Most OLTP data processing system intentionally have a fairly low level of concurrent queries compared to more traditional RDS systems for this reason.
also
Apache Hudi has a default parallelism of several hundred FYI.
Why don't you just partition based on your filter column?
I would start by eliminating possible causes. Are you sure its spark that is not able to submit many jobs? Is it spark or is it YARN? If it is the later, you might need to play with the YARN scheduler settings. Could it be something to do with ExecutorService implementation that may have some limitation for the scale you are trying to achieve? Could it be hudi? With the snippet thats hard to determine.
How does the problem manifest itself other than no jobs starting up? Do you see any metrics / monitoring on the cluster or any logs that point to the problem as you say it?
If it is to do with scaling, is is possible for you to autoscale with EMR flex and see if that works for you?
How many executor cores?
Looking into these might help you narrow down or perhaps confirm the issue - unless you have already looked into these things.
(I meant to add this as comment rather than answer but text too long for comment)
Using threads or thread pools are always problematic and error prone.
I had similar problem in processing spark jobs in one of Internet of things application. I resolved using fair scheduling.
Suggestions :
Use fair scheduling (fairscheduler.xml) instead of yarn capacity scheduler
how to ? see this by using dedicated resource pools one per module. when used it will look like below spark ui
See that unit of parllelism (number of partitions ) are correct for data frames you use by seeing spark admin ui. This is spark native way of using parllelism.

Does python multiprocessing work with Hadoop streaming?

In Hadoop streaming - where the Mapper and Reducer are written in python - Does it help to make the Mapper process use the multiprocessing module? Or does the scheduler prevent the Mapper scripts from running on multiple threads on the compute nodes?
In classic MapReduce there is nothing that stops you from having multiple threads in a mapper or a reducer. The same is true for Hadoop Streaming, you can very well have multiple threads per mapper or reducer. This situation can happen if you have a CPU heavy job and want to speed it up.
If you're doing Hadoop Streaming with Python, you can use the multiprocessing module to speed up your mapper phase.
Note that depending on the way your Hadoop cluster is configured (how many JVM mapper/reducer per nodes) you may have to adjust the maximum number of processes you can use.

AWS Glue not using all executors

I am using some AWS glue to perform some ETL operations. My program writes a computed dataframe to S3. When I look at the metrics, i find that not all my executors are being used, infact just one is being used.
How do I make sure all my allocated executors are being busy ?
Thanks.
I do not use gluecontext in my program just native sparkcontext
Not using gluecontext could be one of the reason for one executor being used.
https://docs.aws.amazon.com/glue/latest/dg/monitor-profile-debug-straggler.html
Especially read Memory Profile section:
After the first two stages, only executor number 3 is actively
consuming memory to process the data. The remaining executors are
simply idle or have been relinquished shortly after the completion of
the first two stages.
I found that my job was not using all the executors, despite having a lot of data to process. The problem was in the set up on my SparkContext. I was using SparkContext.setMaster("local[*]"), which I believe makes the job run on only one executor (driver). If that helps your problem or anyone else facing the same issue.

Schedule each Apache Spark Stage to run on a specific Worker Node

Suppose, I am running a simple Wordcount application on Spark (actually Spark Streaming) with 2 worker nodes. By default each task (from any stage) is scheduled to any available resource based on a scheduling algorithm. However, I want to change the default scheduling to fix each stage to a specific worker node.
Here is what I am trying to achieve -
Worker Node 'A' should only process the first Stage (like 'map' stage). So all the data that comes in must first go to worker 'A'
and Worker Node 'B' should only process the second stage (like 'reduce' stage). Effectively, the results of Worker A are processed by Worker B.
My first question is - Is this sort of customisation possible on Spark or Spark Streaming by tuning the parameters or choosing a correct config option? (I don't think it is, but can someone confirm this?)
My second question is - Can I achieve this by making some change to the Spark scheduler code? I am ok hardcoding the IPs of the workers if necessary. Any hints or pointers to this specific problem or even understanding the Spark Scheduler code in more detail would be helpful..
I understand that this change defeats the efficiency goals of Spark to some extent but I am only looking to experiment with different setups for a project.
Thanks!

Resources