threejs - creating "cel-shading" for objects that are close by - graphics

So I'm trying to "outline" 3D objects. Standard problem, for which the answer is meant to be that you copy the mesh, color it the outline color, scale it up, and then set it to only render faces that are "pointed in the wrong direction" - for us that means setting side:THREE.BackSide in the material. Eg here https://stemkoski.github.io/Three.js/Outline.html
But see what happens for me
Here's what I'd like to make
I have a bunch of objects that are close together - they get "inside" one another's outline.
Any advice on what I should do? What I want to be seeing is everywhere on the rendered frame that these shapes touch the background or each other, there you have outline.

What do you want to happen? Is that one mesh in your example or is it a bunch of intersecting meshes. If it's a bunch of intersecting meshes do you want them to have one outline? What about other meshes? My point is you need some way to define which "groups" of meshes get a single outline if you're using multiple meshes.
For multiple meshes and one outline a common solution is to draw all the meshes in a single group to a render target to generate a silhouette, then post process the silhouette to expand it. Finally apply the silhouette to the scene. I don't know of a three.js example but the concept is explained here and there's also many references here
Another solution that might work, should be possible to move the outline shell back in Z so doesn't intersect. Either all the way back (Z = 1 in clip space) or back some settable amount. Drawing with groups so that a collection of objects in front has an outline that blocks a group behind would be harder.
For example if I take this sample that prisoner849 linked to
And change the vertexShaderChunk in OutlineEffect.js to this
var vertexShaderChunk = `
#include <fog_pars_vertex>
uniform float outlineThickness;
vec4 calculateOutline( vec4 pos, vec3 objectNormal, vec4 skinned ) {
float thickness = outlineThickness;
const float ratio = 1.0; // TODO: support outline thickness ratio for each vertex
vec4 pos2 = projectionMatrix * modelViewMatrix * vec4( skinned.xyz + objectNormal, 1.0 );
// NOTE: subtract pos2 from pos because BackSide objectNormal is negative
vec4 norm = normalize( pos - pos2 );
// ----[ added ] ----
// compute a clipspace value
vec4 pos3 = pos + norm * thickness * pos.w * ratio;
// do the perspective divide in the shader
pos3.xyz /= pos3.w;
// just return screen 2d values at the back of the clips space
return vec4(pos3.xy, 1, 1);
}
`;
It's easier to see if you remove all references to reflectionCube and set the clear color to white renderer.setClearColor( 0xFFFFFF );
Original:
After:

Related

How to draw a border outline on a group of Goldberg polyhedron faces?

I have a Goldberg polyhedron that I have procedurally generated. I would like to draw an outline effect around a group of “faces” (let's call them tiles) similar to the image below, preferably without generating two meshes, doing the scaling in the vertex shader. Can anyone help?
My assumption is to use a scaled version of the tiles to write into a stencil buffer, then redraw those tiles comparing the stencil to draw the outline (as usual for this kind of effect), but I can't come up with an elegant solution to scale the tiles.
My best idea so far is to get the center point of the neighbouring tiles (green below) for each edge vertex (blue) and move the vertex towards them weighted by how many there are, which would leave the interior ones unmodified and the exterior ones moved inward. I think this works in principle, but I would need to generate two meshes as I couldn't do scaling this way in the vertex shader (as far as I know).
If it’s relevant this is how the polyhedron is constructed. Each tile is a separate object, the surface is triangulated with a central point and there is another point at the polyhedron’s origin (also the tile object’s origin). This is just so the tiles can be scaled uniformly and protrude from the polyhedron without creating gaps or overlaps.
Thanks in advance for any help!
EDIT:
jsb's answer was a simple and elegant solution to this problem. I just wanted to add some extra information in case someone else has the same problem.
First, here is the C# code I used to calculate these UVs:
// Use duplicate vertex count (over 4)
var vertices = mesh.vertices;
var uvs = new Vector2[vertices.Length];
for(int i = 0; i < vertices.Length; i++)
{
var duplicateCount = vertices.Count(s => s == vertices[i]);
var isInterior = duplicateCount > 4;
uvs[i] = isInterior ? Vector2.zero : Vector2.one;
}
Note that this works because I have not welded any vertices in my original mesh so I can count the adjoining triangles by just looking for duplicate vertices.
You can also do it by counting triangles like this (this would work with merged vertices, at least with how Unity's mesh data is laid out):
// Use triangle count using this vertex (over 4)
var triangles = mesh.triangles;
var uvs = new Vector2[mesh.vertices.Length];
for(int i = 0; i < triangles.Length; i++)
{
var triCount = triangles.Count(s => mesh.vertices[s] == mesh.vertices[triangles[i]]);
var isInterior = triCount > 4;
uvs[i] = isInterior ? Vector2.zero : Vector2.one;
}
Now on to the following problem. In my use case I also need to generate outlines for irregular tile patterns like this:
I neglected to mention this in the original post. Jsb's answer is still valid but the above code will not work as is for this. As you can see, when we have a tile that is only connected by one edge, the connecting vertices only "share" 2 interior triangles so we get an "exterior" edge. As a solution to this I created extra vertices along the the exterior edges of the tiles like so:
I did this by calculating the half way point along the vector between the original exterior tile vertices (a + (b - a) * 0.5) and inserting a point there. But, as you can see, the simple "duplicate vertices > 4" no longer works for determining which tiles are on the exterior.
My solution was to wind the vertices in a specific order so I know that every 3rd vertex is one I inserted along the edge like this:
Vector3 a = vertex;
Vector3 b = nextVertex;
Vector3 c = (vertex + (nextVertex - vertex) * 0.5f);
Vector3 d = tileCenter;
CreateTriangle(c, d, a);
CreateTriangle(c, b, d);
Then modify the UV code to test duplicates > 2 for these vertices (every third vertex starting at 0):
// Use duplicate vertex count
var vertices = mesh.vertices;
var uvs = new Vector2[vertices.Length];
for(int i = 0; i < vertices.Length; i++)
{
var duplicateCount = vertices.Count(s => s == vertices[i]);
var isMidPoint = i % 3 == 0;
var isInterior = duplicateCount > (isMidPoint ? 2 : 4);
uvs[i] = isInterior ? Vector2.zero : Vector2.one;
}
And here is the final result:
Thanks jsb!
One option that avoids a second mesh would be texturing:
Let's say you define 1D texture coordinates on the triangle vertices like this:
When rendering the mesh, use these coordinates to look up in a 1D texture which defines the interior and border color:
Of course, instead of using a texture, you can just as well implement this behavior in a fragment shader by thresholding the texture coordinate, conceptually:
if (u > 0.9)
fragColor = white;
else
fragColor = gray;
To update the outline, you would only need upload a new set of tex coords, which are just 1 for vertices on the outline and 0 everywhere else.
Depending on whether you want the outlines to extend only into the interior of the selected region or symmetrically to both sides of the boundary, you would need to specify the tex coords either per-corner or per-vertex, respectively.

Merging overlapping transparent shapes in directx

This is the problem I am facing simplified:
Using directx I need to draw two(or more) exactly (in the same 2d plane) overlapping triangles. The triangles are semi transparent but the effect I want to release is that they clip to transparency of a single triangle. The picture below might depict the problem better.
Is there a way to do this?
I use this to get overlapping transparent triangles to not "accumulate". You need to create a blendstate and set it on output merge.
blendStateDescription.AlphaToCoverageEnable = false;
blendStateDescription.RenderTarget[0].IsBlendEnabled = true;
blendStateDescription.RenderTarget[0].SourceBlend = D3D11.BlendOption.SourceAlpha;
blendStateDescription.RenderTarget[0].DestinationBlend = D3D11.BlendOption.One; //
blendStateDescription.RenderTarget[0].BlendOperation = D3D11.BlendOperation.Maximum;
blendStateDescription.RenderTarget[0].SourceAlphaBlend = D3D11.BlendOption.SourceAlpha; //Zero
blendStateDescription.RenderTarget[0].DestinationAlphaBlend = D3D11.BlendOption.DestinationAlpha;
blendStateDescription.RenderTarget[0].AlphaBlendOperation = D3D11.BlendOperation.Maximum;
blendStateDescription.RenderTarget[0].RenderTargetWriteMask = D3D11.ColorWriteMaskFlags.All;
Hope this helps. Code is in C# but it works the same in C++ etc. Basically, takes the alpha of both source and destination, compares and takes the max. Which will always be the same (as long as you use the same alpha on both triangles) otherwise it will render the one with the most alpha.
edit: I've added a sample of what the blending does in my project. The roads here overlap. Overlap Sample
My pixel shader is as:
I pass the UV co-ords in a float4.
xy = uv coords.
w is the alpha value.
Pixel shader code
float4 pixelColourBlend;
pixelColourBlend = primaryTexture.Sample(textureSamplerStandard, input.uv.xy, 0);
pixelColourBlend.w = input.uv.w;
clip(pixelColourBlend.w - 0.05f);
return pixelColourBlend;
Ignore my responses, couldn't edit them...grrrr.
Enabling the depth stencil prevents this problem

transition a circle into a line by unrolling it with SVG and d3

For a project we are trying to make a circle into a line (and back again) while it is rotating along a linear path, much like a tire rotates and translates when rolling on a road, or a curled fore finger is extended and recurled into the palm.
In this Fiddle, I have a static SVG (the top circle) that rotates along the linear black path (which is above the circle, to mimic a finger extending) that is defined in the HTML.
I also use d3 to generate a "circle" that is made up of connected points (and can unfurl if you click on/in the circle thanks to #ChrisJamesC here ), and is translated and rotated
in the function moveAlongLine when you click on the purple Line:
function moveAlongLine() {
circle.data([lineData])
.attr("transform", "translate(78.5,0) rotate(-90, 257.08 70) ")
.duration(1000)
circle.on("click", transitionToCircle)
}
The first problem is that the .duration(1000) is not recognized and throws a Uncaught TypeError: Object [object Array] has no method 'duration' in the console, so there is a difference between the static definition of dur in SVG and dynamically setting it in JS/D3, but this is minor.
The other is should the transform attributes be abstracted from one another like in the static circle? in the static circle, the translate is one animation, and the rotation is another, they just have the same star and duration, so they animate together. How would you apply both in d3?
The challenge that I can not get, is how to let it unroll upwards(and also re-roll back), with the static point being the top center of the circle also being the same as the leftmost point on the line.
these seem better:
I should try to get the unfurl animation to occur while also rotating? This seems like it would need to be stepwise/sequential based...
Or Consider an octogon (defined as a path), and if it were to rotate 7 of the sides, then 6, then 5.... Do this for a rather large number of points on a polyhedron? (the circle only needs to be around 50 or so pixels, so 100 points would be more than enough) This is the middle example in the fiddle. Maybe doing this programmatically?
Or This makes me think of a different way: (in the case of the octogon), I could have 8 line paths (with no Z, just an additional closing point), and transition between them? Like this fiddle
Or anything todo with keyframes? I have made an animation in Synfig, but am unsure ho get it to SVG. The synfig file is at http://specialorange.org/filedrop/unroll.sifz if you can convert to SVG, but the xsl file here doesn't correctly convert it for me using xsltproc.
this seems really complicated but potential:
Define a path (likely a bézier curve with the same number of reference points) that the points follow, and have the reference points dynamically translate as well... see this for an concept example
this seems complicated and clunky:
Make a real circle roll by, with a growing mask in front of it, all while a line grows in length
A couple of notes:
The number of points in the d3 circle can be adjusted in the JS, it is currently set low so that you can see a bit of a point in the rendering to verify the rotation has occurred (much like the gradient is in the top circle).
this is to help students learn what is conserved between a number line and a circle, specifically to help learn fractions. For concept application, take a look at compthink.cs.vt.edu:3000 to see our prototype, and this will help with switching representations, to help you get a better idea...
I ended up using the same function that generates the circle as in the question, and did a bit of thinking, and it seemed like I wanted an animation that looked like a finger unrolling like this fiddle. This lead me to the math and idea needed to make it happen in this fiddle.
The answer is an array of arrays, with each nested array being a line in the different state, and then animate by interpolating between the points.
var circleStates = [];
for (i=0; i<totalPoints; i++){
//circle portion
var circleState = $.map(Array(numberOfPoints), function (d, j) {
var x = marginleft + radius + lineDivision*i + radius * Math.sin(2 * j * Math.PI / (numberOfPoints - 1));
var y = margintop + radius - radius * Math.cos(2 * j * Math.PI / (numberOfPoints - 1));
return { x: x, y: y};
})
circleState.splice(numberOfPoints-i);
//line portion
var lineState = $.map(Array(numberOfPoints), function (d, j) {
var x = marginleft + radius + lineDivision*j;
var y = margintop;
return { x: x, y: y};
})
lineState.splice(i);
//together
var individualState = lineState.concat(circleState);
circleStates.push(individualState);
}
and the animation(s)
function all() {
for(i=0; i<numberOfPoints; i++){
circle.data([circleStates[i]])
.transition()
.delay(dur*i)
.duration(dur)
.ease("linear")
.attr('d', pathFunction)
}
}
function reverse() {
for(i=0; i<numberOfPoints; i++){
circle.data([circleStates[numberOfPoints-1-i]])
.transition()
.delay(dur*i)
.duration(dur)
.ease("linear")
.attr('d', pathFunction)
}
}
(Note: This should be in comments but not enough spacing)
Circle Animation
Try the radial wipe from SO. Need to tweak it so angle starts at 180 and ends back at same place (line#4-6,19) and move along the X-axis (line#11) on each interation. Change the <path... attribute to suit your taste.
Line Animation Grow a line from single point to the length (perimeter) of the circle.
Sync both animation so that it appears good on all browsers (major headache!).

HLSL beginner needs some directions

Is there any example out there of a HLSL written .fx file that splats a tiled texture with different tiles?Like this: http://messy-mind.net/blog/wp-content/uploads/2007/10/transitions.jpg you can see theres a different tile type in each square and there's a little blurring between them to make a smoother transition,but right now I just need to find a way to draw the tiles on a texture.I have a 2D array of integers,each integer equals a corresponding tile type(0 = grass,1 = stone,2 = sand).I opened up a few HLSL examples and they were really confusing.Everything is running fine on the C++ side,but HLSL is proving to be difficult.
You can use a technique called 'texture splatting'. It mixes several textures (color maps) using another texture which contains alpha values for each color map. The texture with alpha values is an equivalent of your 2D array. You can create a 3-channel RGB texture and use each channel for a different color map (in your case: R - grass, G - stone, B - sand). Every pixel of this texture tells us how to mix the color maps (for example R=0 means 'no grass', G=1 means 'full stone', B=0.5 means 'sand, half intensity').
Let's say you have four RGB textures: tex1 - grass, tex2 - stone, tex3 - sand, alpha - mixing texture. In your .fx file, you create a simple vertex shader which just calculates the position and passes the texture coordinate on. The whole thing is done in pixel shader, which should look like this:
float tiling_factor = 10; // number of texture's repetitions, you can also
// specify a seperate factor for each texture
float4 PS_TexSplatting(float2 tex_coord : TEXCOORD0)
{
float3 color = float3(0, 0, 0);
float3 mix = tex2D(alpha_sampler, tex_coord).rgb;
color += tex2D(tex1_sampler, tex_coord * tiling_factor).rgb * mix.r;
color += tex2D(tex2_sampler, tex_coord * tiling_factor).rgb * mix.g;
color += tex2D(tex3_sampler, tex_coord * tiling_factor).rgb * mix.b;
return float4(color, 1);
}
If your application supports multi-pass rendering you should use it.
You should use a multi-pass shader approach where you render the base object with the tiled stone texture in the first pass and on top render the decal passes with different shaders and different detail textures with seperate transparent alpha maps.
(Transparent map could also be stored in your detail texture, but keeping it seperate allows different tile-levels and more flexibility in reusing it.)
Additionally you can use different texture coordinate channels for each decal pass one so that you do not need to hardcode your tile level.
So for minimum you need two shaders, whereas Shader 2 is used as often as decals you need.
Shader to render tiled base texture
Shader to render one tiled detail texture using a seperate transparency map.
If you have multiple decals z-fighting can occur and you should offset your polygons a little. (Very similar to basic simple fur rendering.)
Else you need a single shader which takes multiple textures and lays them on top of the base tiled texture, this solution is less flexible, but you can use one texture for the mix between the textures (equals your 2D-array).

shade border of 2D polygon differently

we are programming a 2D game in XNA. Now we have polygons which define our level elements. They are triangulated such that we can easily render them. Now I would like to write a shader which renders the polygons as outlined textures. So in the middle of the polygon one would see the texture and on the border it should somehow glow.
My first idea was to walk along the polygon and draw a quad on each line segment with a specific texture. This works but looks strange for small corners where the textures are forced to overlap.
My second approach was to mark all border vertices with some kind of normal pointing out of the polygon. Passing this to the shader would interpolate the normals across edges of the triangulation and I could use the interpolated "normal" as a value for shading. I could not test it yet but would that work? A special property of the triangulation is that all vertices are on the border so there are no vertices inside the polygon.
Do you guys have a better idea for what I want to achieve?
Here A picture of what it looks right now with the quad solution:
You could render your object twice. A bigger stretched version behind the first one. Not that ideal since a complex object cannot be streched uniformly to create a border.
If you have access to your screen buffer you can render your glow components into a rendertarget and align a full-screen quad to your viewport and add a fullscreen 2D silhouette filter to it.
This way you gain perfect control over the edge by defining its radius, colour, blur. With additional output values such as the RGB values from the object render pass you can even have different advanced glows.
I think rendermonkey had some examples in their shader editor. Its definetly a good starting point to work with and try out things.
Propaply you want calclulate new border vertex list (easy fill example with triangle strip with originals). If you use constant border width and convex polygon its just:
B_new = B - (BtoA.normalised() + BtoC.normalised()).normalised() * width;
If not then it can go more complicated, there is my old but pretty universal solution:
//Helper function. To working right, need that v1 is before v2 in vetex list and vertexes are going to (anti???) cloclwise!
float vectorAngle(Vector2 v1, Vector2 v2){
float alfa;
if (!v1.isNormalised())
v1.normalise();
if (!v2.isNormalised())
v2.normalise();
alfa = v1.dotProduct(v2);
float help = v1.x;
v1.x = v1.y;
v1.y = -help;
float angle = Math::ACos(alfa);
if (v1.dotProduct(v2) < 0){
angle = -angle;
}
return angle;
}
//Normally dont use directly this!
Vector2 calculateBorderPoint(Vector2 vec1, Vector2 vec2, float width1, float width2){
vec1.normalise();
vec2.normalise();
float cos = vec1.dotProduct(vec2); //Calculates actually cosini of two (normalised) vectors (remember math lessons)
float csc = 1.0f / Math::sqrt(1.0f-cos*cos); //Calculates cosecant of angle, This return NaN if angle is 180!!!
//And rest of the magic
Vector2 difrence = (vec1 * csc * width2) + (vec2 * csc * width1);
//If you use just convex polygons (all angles < 180, = 180 not allowed in this case) just return value, and if not you need some more magic.
//Both of next things need ordered vertex lists!
//Output vector is always to in side of angle, so if this angle is.
if (Math::vectorAngle(vec1, vec2) > 180.0f) //Note that this kind of function can know is your function can know that angle is over 180 ONLY if you use ordered vertexes (all vertexes goes always (anti???) cloclwise!)
difrence = -difrence;
//Ok and if angle was 180...
//Note that this can fix your situation ONLY if you use ordered vertexes (all vertexes goes always (anti???) cloclwise!)
if (difrence.isNaN()){
float width = (width1 + width2) / 2.0; //If angle is 180 and border widths are difrent, you cannot get perfect answer ;)
difrence = vec1 * width;
//Just turn vector -90 degrees
float swapHelp = difrence.y
difrence.y = -difrence.x;
difrence.x = swapHelp;
}
//If you don't want output to be inside of old polygon but outside, just: "return -difrence;"
return difrence;
}
//Use this =)
Vector2 calculateBorderPoint(Vector2 A, Vector2 B, Vector2 C, float widthA, float widthB){
return B + calculateBorderPoint(A-B, C-B, widthA, widthB);
}
Your second approach can be possible...
mark the outer vertex (in border) with 1 and the inner vertex (inside) with 0.
in the pixel shader you can choose to highlight, those that its value is greater than 0.9f or 0.8f.
it should work.

Resources