How to check if the root filesystem has been mounted in linux - linux

I was wondering if it was possible to know if the rootfile system has been mounted from the kernel. Im trying to read a file from /bin but it doesnt work on boot.
static int ret_my_file() is in fs/exec.c
static int ret_my_file()
{
struct file* f;
char *dbtext;
struct path dbpath;
mm_segment_t oldfs;
struct kstat dbstat;
kern_path("/bin/myfile", 0, &dbpath);
vfs_getattr(&dbpath, &dbstat);
dbtext = vmalloc(dbstat.size*sizeof(char));
f=filp_open("/bin/myfile", O_RDONLY, 0);
oldfs=get_fs();
set_fs (KERNEL_DS);
vfs_read(f, dbtext, dbstat.size, &f->f_pos);
set_fs(oldfs);
printk(KERN_CRIT "Db value is");
printk(KERN_CRIT "%s\n",dbtext);
vfree(dbtext);
return 0;
}
called in the function do_execveat_common() also in fs/exec.c as
static int do_execveat_common(int fd, struct filename *filename,
struct user_arg_ptr argv,
struct user_arg_ptr envp,
int flags)
{
char *pathbuf = NULL;
struct linux_binprm *bprm;
struct file *file;
struct files_struct *displaced;
int retval;
retval=ret_my_file();
......}
but the function do_execveat_common() is called during boot up so i wanted to put a condition before retval=ret_my_file(); so that it only runs after the root filesystem has been mounted

Related

How to create a file with content using debugfs in kernel module?

With this debugfs API I can create a file in /sys/kernel/debug/parent/name, but it's empty, no matter which data I put in void *data parameter
struct dentry *debugfs_create_file(const char *name, mode_t mode, struct dentry *parent, void *data, struct file_operations *fops);
According to documentation we need to implement file_operations ourself to handle file open and write.
A snippet of code from mine:
static ssize_t myreader(struct file *fp, char __user *user_buffer,
size_t count, loff_t *position)
{
return simple_read_from_buffer(user_buffer, count, position, ker_buf, len);
}
static ssize_t mywriter(struct file *fp, const char __user *user_buffer,
size_t count, loff_t *position)
{
if(count > len )
return -EINVAL;
return simple_write_to_buffer(ker_buf, len, position, user_buffer, count);
}
static const struct file_operations fops_debug = {
.read = myreader,
.write = mywriter,
};
static int __init init_debug(void)
{
dirret = debugfs_create_dir("dell", NULL);
fileret = debugfs_create_file("text", 0644, dirret, "HELLO WORLD", &fops_debug);
debugfs_create_u64("number", 0644, dirret, &intvalue);
return (0);
}
After installing this module to kernel, two files 'text' and 'number' will be created in the folder 'dell'. File 'number' contains the number I passed in as 'intvalue' as expected, but the other file 'text' is empty.
It's written in document that data will be stored in the i_private field of the resulting inode structure
My expectation: The string "HELLO WORLD" will be written in the file after module is loaded.
I think that the problem should be in the read and write operation functions. Is it possible to create a file with a particular content with the debugfs_create_file method?
To answer your question, whatever you are expecting from your code is correct but it is not going to produce the expected result. I believe there are other more efficient and correct ways of doing it, but to explain the current behavior:
You are initializing data as content of file text but you are reading from buffer ker_buf in user_buffer instead of file pointer using simple_read_from_buffer(user_buffer, count, position, ker_buf, len);
Similarly you are writing to kern_buf from user_buffer using simple_write_to_buffer(ker_buf, len, position, user_buffer, count);
With the existing code, if you want to achieve what you are trying to do, then you have to copy the string "HELLO WORLD" to kern_buf in init_debug()
Something like:
strscpy(kern_buf, "HELLO WORLD", strlen("HELLO WORLD") + 1);
or in form of complete function:
static int __init init_debug(void)
{
dirret = debugfs_create_dir("dell", NULL);
fileret = debugfs_create_file("text", 0644, dirret, NULL, &fops_debug);
debugfs_create_u64("number", 0644, dirret, &intvalue);
strscpy(kern_buf, "HELLO WORLD", strlen("HELLO WORLD") + 1);
return (0);
}
Edit:
Referred some online materials and found out that the void *data provided to debugfs_create_file() during initialization gets stored in the i_private field and can be later retrieved from the i_private field of the resulting inode structure.
The inode of the respective file can be fetched from struct file *fp which is the first argument of read() or write() operations.
The struct inode is a member of struct file and i_private is a member of struct inode
To fetch void *data provided during file creation via debugfs_create_file() in read() you can do something similar to as shown below:
static ssize_t myreader(struct file *fp, char __user *user_buffer,
size_t count, loff_t *position)
{
struct inode *l_inode = fp->f_inode;
strscpy(user_buffer, (char *)l_inode->i_private, PAGE_SIZE);
...
}

How could I use `kallsyms_lookup_name` function to fix `unknown character` error when loading Linux kernel module?

I'm trying to complete a hooking sample attachment in a program for my uni assignment. The task requires to get a system call sys_rt_sigaction hooked when initiating a loadable module in Linux kernel (I use Ubuntu 18.04 LTS, kernel version is 5.0.0-23-generic). So, the case I'm struggling originates from an error could not insert module <module name>: Unknown symbol in module once I started sudo insmod <my module name>.ko.
After some googling, I see clear this problem arises due to missing sys_call_table export to run inserting as smoothly as well. Following this post, I want to cope that invoking kallsyms_lookup_name call before kicking off init procedure.
There is .c-file which provides with definitions of operations accessible by module (file name is buffer.c):
#define __KERNEL__
#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/syscalls.h>
#include <linux/kallsyms.h>
#include <linux/unistd.h>
void * sys_call_table = (void *) kallsyms_lookup_name("sys_call_table");// some wrongness here, but what exactly?
MODULE_LICENSE("GPL");
int (*real_rt_sigaction)(const char * path); // true syscall prototype
static int __init buffer_init_module(void);
static void __exit buffer_exit_module(void);
static int device_open(struct inode *, struct file *); // driver file opening
static int device_release(struct inode *, struct file *); // return of system resource control
static ssize_t device_read(struct file *, char *, size_t, loff_t *); // reading from driver file
static ssize_t device_write(struct file *, const char *, size_t, loff_t *); // writing into driver file
#define DEVICE_NAME "buffer"
#define BUF_LEN 80
// to be called instead
int alter_rt_sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact, size_t sigsetsize) {
printk(KERN_INFO "Syscall function hooked - you've lost control of your experience");
return 0;
}
static int Major;
static int Device_Open = 0;
static int total_open = 1;
static char Buf[BUF_LEN + 1] = "Buffer is empty, add some input\n";
static char *Msg_ptr;
static int Buf_Char = 50;
static int Bytes_Read = 0;
static struct file_operations fops = {
.read = device_read,
.write = device_write,
.open = device_open,
.release = device_release
};
static int __init buffer_init_module(void)
{
printk(KERN_INFO
"Device initializing in progress...");
Major = register_chrdev(0, DEVICE_NAME, &fops);
if(Major < 0) {
printk("Major number hasn't been assigned - Driver registration failed\n");
return Major;
}
printk(KERN_INFO "Registration success - device major number: %d\n", Major);
real_rt_sigaction=sys_call_table[__NR_rt_sigaction];
sys_call_table[__NR_rt_sigaction]=alter_rt_sigaction; // hooking implementation
return 0;
}
static void __exit buffer_exit_module(void)
{
unregister_chrdev(Major, DEVICE_NAME);
printk(KERN_INFO "Outside the module - exit successfully completed\n");
sys_call_table[__NR_rt_sigaction]=real_rt_sigaction; // original call reset
}
static int device_open(struct inode *inode, struct file *file)
{
if(Device_Open)
return -EBUSY;
Device_Open++;
printk(KERN_INFO "Device file has been accessed %d time(s)\n", total_open++);
Msg_ptr = Buf;
try_module_get(THIS_MODULE);
Bytes_Read = 0;
return 0;
}
static int device_release(struct inode * node, struct file * filep)
{
Device_Open--;
module_put(THIS_MODULE);
printk(KERN_INFO "Device file gets close\n");
return 0;
}
static ssize_t device_read(struct file * filep, char * buffer, size_t len, loff_t * offset)
{
int got_read = Bytes_Read;
if(Bytes_Read >= Buf_Char)
return 0;
while(len && (Bytes_Read < Buf_Char)) {
put_user(Msg_ptr[Bytes_Read], buffer+Bytes_Read);
len--;
Bytes_Read++;
}
return Bytes_Read-got_read;
}
static ssize_t device_write(struct file * filep, const char * buffer, size_t len, loff_t * offset)
{
Buf_Char = 0;
if(Buf_Char >= BUF_LEN) {
return 0;
}
while(len && (Buf_Char < BUF_LEN))
{
get_user(Msg_ptr[Buf_Char], buffer+Buf_Char);
len--;
Buf_Char++;
}
return Buf_Char;
}
module_init(buffer_init_module);
module_exit(buffer_exit_module);
Additively, there is code in Makefile:
obj-m += buffer.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
The painful moment here is an error message initializer element is not constant whenever I was trying to build module via sudo make in my project folder. As I follow the beginner's tutorials and need for some basic insight, it might be highly appreciable to see any help with solution or even some ideas how to handle the same problem more effectively, indeed.

Kernel throws error while writing to the character device file in 4.9.82-ti-r102 debian 9.3

I created the device file under /dev folder successfully, but writing to that device file makes kernel to throw following error messages.
kernel:[10090.943733] Internal error: : 1b [#3] PREEMPT SMP ARM
kernel:[10091.049020] Process echo (pid: 3728, stack limit = 0xdc40a218)
kernel:[10091.054880] Stack: (0xdc40be60 to 0xdc40c000)
kernel:[10091.059267] be60: c15491c6 00000022 dc5cb14c bf30430c dc40bedc dc40be88 c075312c c074fe5c
kernel:[10091.067488] be80: c0753018 ffffff04 ffff0a00 c140414c c0d407c8 bf30430c c140414c 40cfbcf3
kernel:[10091.075709] bea0: 00852878 ffffff04 ffff0a00 00040952 c01a7404 c140414c 00852878 00852878
Segmentation fault
I know very basic of Linux Device Drivers
can anyone help me regarding this??
I'm attaching the code for this character device driver
#include<linux/kernel.h>
#include<linux/init.h>
#include<linux/module.h>
#include<linux/fs.h>
#include<linux/uaccess.h>
#include<linux/device.h>
MODULE_AUTHOR("RUCHA");
MODULE_DESCRIPTION("Character Driver First test");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.0.1");
static int MajorNum;
static struct class* RetValOfClassRegistration = NULL;
static struct device* RetVal = NULL;
static char message[1024];
static int openDev(struct inode * , struct file *);
static int closeDev(struct inode * , struct file *);
static ssize_t readDev(struct file *, char *, size_t, loff_t *);
static ssize_t writeDev(struct file *, const char *, size_t, loff_t *);
static struct file_operations FileOps = {
.owner = THIS_MODULE,
.open = openDev,
.read = readDev,
.write = writeDev,
.release = closeDev,
};
static int registerCharDev(void){
return register_chrdev(0,"MyDev",&FileOps);
}
static int __init Loaded(void){
// registering device
MajorNum = registerCharDev();
if(MajorNum < 0){
printk("Can not register device\n");
return -1;
}
printk("Driver Loaded with %d \n",MajorNum);
// registering device class
RetValOfClassRegistration = class_create(THIS_MODULE,"MyCharacterDriver");
if(RetValOfClassRegistration < 0){
printk("can not register class for driver number : %d\n",MajorNum);
return 0;
}
// register the driver
RetVal = device_create(RetValOfClassRegistration,NULL,MKDEV(MajorNum,0),NULL,"MyDev");
return 0;
}
static void __exit Removed(void){
device_destroy(RetValOfClassRegistration,MKDEV(MajorNum,0));
class_unregister(RetValOfClassRegistration);
class_destroy(RetValOfClassRegistration);
unregister_chrdev(MajorNum,"MyDev");
printk("Driver Removed\n");
}
module_init(Loaded);
module_exit(Removed);
static int openDev(struct inode *inodep , struct file *filep){
printk("Device is now open to read write operations\n");
return 0;
}
static int closeDev(struct inode *inodep , struct file *filep){
printk("Device Closed\n");
return 0;
}
static ssize_t readDev(struct file *filep, char *c, size_t v, loff_t *lp){
printk("Read From the device\n");
return 0;
}
static ssize_t writeDev(struct file *file, const char __user *buf, size_t count, loff_t *offset)
{
sprintf(message, "%s(%zu letters)", buf, len);
return 0;
}
and the user input is
echo '1' > /dev/MyDev
You can't access a user data pointer (buf) directly. You need to use copy_from_user to copy the data into kernel memory first. Also, use snprintf instead of sprintf to avoid buffer overflows.
Also, compile with debugging enabled, especially CONFIG_DEBUG_INFO, to get more helpful error messages in the kernel log.

Null pointer exception in kernel while doing write operation

I am a windows driver programmer, who is also a complete beginner in linux kernel development. im trying out simple linux kernel modules.
I have written a parallel port driver as in the following code and could successfully load this driver.
I have created a char device node using command mknod with same major and minor numbers as in the code. I have tried reading from the file using cat command and i found it was working fine. While i tried writing the same device using command cat in.txt>/dev/parallel_dev the prompt shows a message "killed" and in dmesg, it has shown unable to handle kernel NULL pointer exception.
#include<linux/init.h>
#include<linux/module.h>
#include<linux/kernel.h> //kprintf
#include<linux/module.h> //kmalloc
#include<linux/types.h>
#include<linux/fs.h> //fileoperations,register_chrdev
#include<linux/slab.h>
#include<linux/uaccess.h> //copy from/to user
#include<linux/ioport.h> //check_region
#include<linux/interrupt.h>
#include<linux/delay.h>
static int parallel_open(struct inode* p_node, struct file* p_file);
static int parallel_release(struct inode* p_node, struct file* p_file);
static ssize_t parallel_read(struct file* p_file, char* buf, size_t count, loff_t* f_pos);
static ssize_t parallel_write(struct file* p_file, const char* buf, size_t count, loff_t* f_pos);
static irqreturn_t parallel_interrupt(int irq,void* dev);
static const int major_no = 709;
static const char* dev_name = "parallel_tryout";
#define par_base 0x378
int port;
int* parallel_buffer;
struct file_operations fops = {
.read = parallel_read,
.write = parallel_write,
.open = parallel_open,
.release = parallel_release,
};
static int parallel_init(void)
{
int reg_result;
int irq_req_result;
unsigned int irq_num = 7;
printk("Entered init");
printk("Initializing parallelport dev with major %d",major_no);
reg_result = register_chrdev(major_no, dev_name, 0);
if(reg_result < 0 )
{
printk("Error registering char dev: %s",dev_name);
}
parallel_buffer = kmalloc(16,GFP_KERNEL);
if(parallel_buffer==NULL)
{
printk("Error allocating memory for: %s",dev_name);
}
printk("Port registration");
request_region(0x378,1,"parallelport");
if(port)
{
printk("Error allocating port");
}
parallel_buffer = inb(par_base);
if(parallel_buffer != NULL)
{
printk("Allocated buffer");
}
irq_req_result = request_irq(irq_num,parallel_interrupt,IRQF_SHARED,dev_name,parallel_buffer);
return 0;
}
static void parallel_exit(void)
{
unregister_chrdev(major_no, dev_name);
release_region(0x378,1);
}
static int parallel_open(struct inode* p_node, struct file* p_file)
{
printk("parallel driver opened from device: %s",dev_name);
return 0;
}
static int parallel_release(struct inode* p_node, struct file* p_file)
{
printk("Memory driver closed from device: %s",dev_name);
return 0;
}
static ssize_t parallel_read(struct file* p_file, char* buf, size_t count, loff_t* f_pos)
{
copy_to_user(buf,parallel_buffer,1);
printk("Copied data:%s ",buf);
printk("Memory driver read from device: %s",dev_name);
return 0;
}
static ssize_t parallel_write(struct file* p_file, const char* buf, size_t count, loff_t* f_pos)
{
copy_from_user(parallel_buffer,buf,1);
printk("Copied data:%s ",parallel_buffer);
printk("Memory driver written from device: %s",dev_name);
return 0;
}
static irqreturn_t parallel_interrupt(int irq,void* dev)
{
irqreturn_t return_value;
printk("parallel interrupt detected!!!!");
return return_value;
}
module_init(parallel_init);
module_exit(parallel_exit);
what could be the possible reason for this, and thanks in advance.

How to get the reference count on Linux driver level?

In the Linux kernel the opened file is indicated by struct file, and the file descriptor table contains a pointers which is point to struct file. f_count is an important member in the struct file. f_count, which means Reference Count. The system call dup() and fork() make other file descriptor point to same struct file.
As shown in the picture (sorry, my reputation is too low, the picture can not be uploaded), fd1 and fd2 point to the struct file, so the Reference Count is equal to 2, thus f_count = 2.
My question is how can i get the value of the f_count by programming.
UPDATE:ok,In order to make myself more clear i will show my code, both the char device driver,Makefile and my application.:D
deviceDriver.c
#include "linux/kernel.h"
#include "linux/module.h"
#include "linux/fs.h"
#include "linux/init.h"
#include "linux/types.h"
#include "linux/errno.h"
#include "linux/uaccess.h"
#include "linux/kdev_t.h"
#define MAX_SIZE 1024
static int my_open(struct inode *inode, struct file *file);
static int my_release(struct inode *inode, struct file *file);
static ssize_t my_read(struct file *file, char __user *user, size_t t, loff_t *f);
static ssize_t my_write(struct file *file, const char __user *user, size_t t, loff_t *f);
static char message[MAX_SIZE] = "-------congratulations--------!";
static int device_num = 0;//device number
static int counter = 0;
static int mutex = 0;
static char* devName = "myDevice";//device name
struct file_operations pStruct =
{ open:my_open, release:my_release, read:my_read, write:my_write, };
/* regist the module */
int init_module()
{
int ret;
/ **/
ret = register_chrdev(0, devName, &pStruct);
if (ret < 0)
{
printk("regist failure!\n");
return -1;
}
else
{
printk("the device has been registered!\n");
device_num = ret;
printk("<1>the virtual device's major number %d.\n", device_num);
printk("<1>Or you can see it by using\n");
printk("<1>------more /proc/devices-------\n");
printk("<1>To talk to the driver,create a dev file with\n");
printk("<1>------'mknod /dev/myDevice c %d 0'-------\n", device_num);
printk("<1>Use \"rmmode\" to remove the module\n");
return 0;
}
}
void cleanup_module()
{
unregister_chrdev(device_num, devName);
printk("unregister it success!\n");
}
static int my_open(struct inode *inode, struct file *file)
{
if(mutex)
return -EBUSY;
mutex = 1;//lock
printk("<1>main device : %d\n", MAJOR(inode->i_rdev));
printk("<1>slave device : %d\n", MINOR(inode->i_rdev));
printk("<1>%d times to call the device\n", ++counter);
try_module_get(THIS_MODULE);
return 0;
}
/* release */
static int my_release(struct inode *inode, struct file *file)
{
printk("Device released!\n");
module_put(THIS_MODULE);
mutex = 0;//unlock
return 0;
}
static ssize_t my_read(struct file *file, char __user *user, size_t t, loff_t *f)
{
if(copy_to_user(user,message,sizeof(message)))
{
return -EFAULT;
}
return sizeof(message);
}
static ssize_t my_write(struct file *file, const char __user *user, size_t t, loff_t *f)
{
if(copy_from_user(message,user,sizeof(message)))
{
return -EFAULT;
}
return sizeof(message);
}
Makefile:
# If KERNELRELEASE is defined, we've been invoked from the
# kernel build system and can use its language.
ifeq ($(KERNELRELEASE),)
# Assume the source tree is where the running kernel was built
# You should set KERNELDIR in the environment if it's elsewhere
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
# The current directory is passed to sub-makes as argument
PWD := $(shell pwd)
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_install
clean:
rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions
.PHONY: modules modules_install clean
else
# called from kernel build system: just declare what our modules are
obj-m := devDrv.o
endif
application.c:
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#define MAX_SIZE 1024
int main(void)
{
int fd;
char buf[MAX_SIZE];
char get[MAX_SIZE];
char devName[20], dir[50] = "/dev/";
system("ls /dev/");
printf("Please input the device's name you wanna to use :");
gets(devName);
strcat(dir, devName);
fd = open(dir, O_RDWR | O_NONBLOCK);
if (fd != -1)
{
read(fd, buf, sizeof(buf));
printf("The device was inited with a string : %s\n", buf);
/* test fot writing */
printf("Please input a string :\n");
gets(get);
write(fd, get, sizeof(get));
/* test for reading */
read(fd, buf, sizeof(buf));
system("dmesg");
printf("\nThe string in the device now is : %s\n", buf);
close(fd);
return 0;
}
else
{
printf("Device open failed\n");
return -1;
}
}
Any idea to get the struct file's(char device file) f_count? Is it poassible get it by the way of printk?
You should divide reference counter to module from other module and from user-space application. lsmod show how many modules use your module.
sctp 247143 4
libcrc32c 12644 1 sctp
It is impossible load sctp without libcrc32c because sctp use exported function from libcrc32 to calculate control sum for packets.
The reference counter itself is embedded in the module data structure and can be obtained with the function uint module_refcount(struct module* module);
You can use:
printk("Module reference counter: %d\n", (int)module_refcount(THIS_MODULE));
THIS_MODULE it is a reference to current loadable module (for build-in module it is NULL) inside .owner field (inside struct file_operations).
If there is a need manually modify module's counter use:
int try_module_get(struct module* module);
void module_put(struct module* module);
If module unloaded it will return false. You also can move thru all modules. Modules linked via list.
File opening inside kernel it is bad idea. Inside kernel you can get access to inode. Try read man pages for dup and fork. In you system you can investigate lsof tools.

Resources