Here is a simple program that works in parallel. But in has an issue when I want to use a previous result to apply.
import pandas as pd
import numpy as np
from pandarallel import pandarallel
pandarallel.initialize(nb_workers=8) # nb_workers=NUMBER_OF_CPU_CORES
def dummy_fit(x, y_hint=0.5):
# Imagine quite a complicated code here
# y_hint is a previous fit. When it is not given, use default
y = (x.mean() + y_hint) / 2
return y
df = pd.DataFrame(np.random.random((10, 3)), columns=list("ABC"))
print("data:\n", df)
result = df.parallel_apply(dummy_fit, axis=1)
print(result)
We can use a global variable, but it is only one (we have more threads)
How to make it work in parallel?
I create a program that predict digits from in a dataset. I want when it predict data their should be two cases if it predict right then data should added automatically in dataset otherwise it takes right answer throw user and insert to dataset.
code
import numpy as np
import pandas as pd
import matplotlib.pyplot as pt
from sklearn.tree import DecisionTreeClassifier
data = pd.read_csv("train.csv").values
clf = DecisionTreeClassifier()
xtrain = data[0:21000,1:]
train_label=data[0:21000,0]
clf.fit(xtrain,train_label)
xtest = data[21000: ,1:]
actual_label=data[21000:,0]
d = xtest[9]
d.shape = (28,28)
pt.imshow(d,cmap='gray')
print(clf.predict([xtest[9]]))
pt.show()
I'm not sure I'm following your question, but if you want to distinguish between good and wrong predictions and take different ways, you should specific do that.
predictions = clf.predict(xtest)
good_predictions = xtest[pd.Series(predictions == actual_label)]
bad_predictions = xtest[pd.Series(predictions != actual_label)]
So, in good_predictions will be all the rows in xtest that where predicted right.
This seems like a very important issue for this library, and so far I don't see a decisive answer, although it seems like for the most part, the answer is 'No.'
Right now, any method that uses the transformer api in sklearn returns a numpy array as its results. Usually this is fine, but if you're chaining together a multi-step process that expands or reduces the number of columns, not having a clean way to track how they relate to the original column labels makes it difficult to use this section of the library to its fullest.
As an example, here's a snippet that I just recently used, where the inability to map new columns to the ones originally in the dataset was a big drawback:
numeric_columns = train.select_dtypes(include=np.number).columns.tolist()
cat_columns = train.select_dtypes(include=np.object).columns.tolist()
numeric_pipeline = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())
cat_pipeline = make_pipeline(SimpleImputer(strategy='most_frequent'), OneHotEncoder())
transformers = [
('num', numeric_pipeline, numeric_columns),
('cat', cat_pipeline, cat_columns)
]
combined_pipe = ColumnTransformer(transformers)
train_clean = combined_pipe.fit_transform(train)
test_clean = combined_pipe.transform(test)
In this example I split up my dataset using the ColumnTransformer and then added additional columns using the OneHotEncoder, so my arrangement of columns is not the same as what I started out with.
I could easily have different arrangements if I used different modules that use the same API. OrdinalEncoer, select_k_best, etc.
If you're doing multi-step transformations, is there a way to consistently see how your new columns relate to your original dataset?
There's an extensive discussion about it here, but I don't think anything has been finalized yet.
Yes, you are right that there isn't a complete support for tracking the feature_names in sklearn as of now. Initially, it was decide to keep it as generic at the level of numpy array. Latest progress on the feature names addition to sklearn estimators can be tracked here.
Anyhow, we can create wrappers to get the feature names of the ColumnTransformer. I am not sure whether it can capture all the possible types of ColumnTransformers. But at-least, it can solve your problem.
From Documentation of ColumnTransformer:
Notes
The order of the columns in the transformed feature matrix follows the order of how the columns are specified in the transformers list. Columns of the original feature matrix that are not specified are dropped from the resulting transformed feature matrix, unless specified in the passthrough keyword. Those columns specified with passthrough are added at the right to the output of the transformers.
Try this!
import pandas as pd
import numpy as np
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder, MinMaxScaler
from sklearn.feature_extraction.text import _VectorizerMixin
from sklearn.feature_selection._base import SelectorMixin
from sklearn.feature_selection import SelectKBest
from sklearn.feature_extraction.text import CountVectorizer
train = pd.DataFrame({'age': [23,12, 12, np.nan],
'Gender': ['M','F', np.nan, 'F'],
'income': ['high','low','low','medium'],
'sales': [10000, 100020, 110000, 100],
'foo' : [1,0,0,1],
'text': ['I will test this',
'need to write more sentence',
'want to keep it simple',
'hope you got that these sentences are junk'],
'y': [0,1,1,1]})
numeric_columns = ['age']
cat_columns = ['Gender','income']
numeric_pipeline = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())
cat_pipeline = make_pipeline(SimpleImputer(strategy='most_frequent'), OneHotEncoder())
text_pipeline = make_pipeline(CountVectorizer(), SelectKBest(k=5))
transformers = [
('num', numeric_pipeline, numeric_columns),
('cat', cat_pipeline, cat_columns),
('text', text_pipeline, 'text'),
('simple_transformer', MinMaxScaler(), ['sales']),
]
combined_pipe = ColumnTransformer(
transformers, remainder='passthrough')
transformed_data = combined_pipe.fit_transform(
train.drop('y',1), train['y'])
def get_feature_out(estimator, feature_in):
if hasattr(estimator,'get_feature_names'):
if isinstance(estimator, _VectorizerMixin):
# handling all vectorizers
return [f'vec_{f}' \
for f in estimator.get_feature_names()]
else:
return estimator.get_feature_names(feature_in)
elif isinstance(estimator, SelectorMixin):
return np.array(feature_in)[estimator.get_support()]
else:
return feature_in
def get_ct_feature_names(ct):
# handles all estimators, pipelines inside ColumnTransfomer
# doesn't work when remainder =='passthrough'
# which requires the input column names.
output_features = []
for name, estimator, features in ct.transformers_:
if name!='remainder':
if isinstance(estimator, Pipeline):
current_features = features
for step in estimator:
current_features = get_feature_out(step, current_features)
features_out = current_features
else:
features_out = get_feature_out(estimator, features)
output_features.extend(features_out)
elif estimator=='passthrough':
output_features.extend(ct._feature_names_in[features])
return output_features
pd.DataFrame(transformed_data,
columns=get_ct_feature_names(combined_pipe))
I am looking for the best way to compute many dask delayed obejcts stored in a dataframe. I am unsure if the pandas dataframe should be converted to a dask dataframe with delayed objects within, or if the compute call should be called on all values of the pandas dataframe.
I would appreciate any suggestions in general, as I am having trouble with the logic of passing delayed object across nested for loops.
import numpy as np
import pandas as pd
from scipy.stats import hypergeom
from dask import delayed, compute
steps = 5
sample = [int(x) for x in np.linspace(5, 100, num=steps)]
enr_df = pd.DataFrame()
for N in sample:
enr = []
for i in range(20):
k = np.random.randint(1, 200)
enr.append(delayed(hypergeom.sf)(k=k, M=10000, n=20, N=N, loc=0))
enr_df[N] = enr
I cannot call compute on this dataframe without applying the function across all cells like so: enr_df.applymap(compute) (which I believe calls compute on each value individually).
However if I convert to a dask dataframe the delayed objects I want to compute are layered in the dask dataframe structure:
enr_dd = dd.from_pandas(enr_df, npartitions=1)
enr_dd.compute()
And the computation output I expect does not proceed.
You can pass a list of delayed objects into dask.compute
results = dask.compute(*list_of_delayed_objects)
So you need to get a list from your Pandas dataframe. This is something you can do with normal Python code.
I am working on a project and While getting the dummies value i was getting memory exception
I have tried using .astype(np.int8) and i have also tried writing exception handling code by importing psutil
i am using below code
dummy_cols = ['emp_title','grade','home_ownership','verification_status','addr_state','pub_rec','application_type']
df_dummies = pd.get_dummies(df[dummy_cols], drop_first = True)
It's not working and throwing an error
pandas.get_dummies creates a dense representation of dummy variables, which may request lots of memory depending on the number of levels in the categorical features.
I would prefer scikit-learn.preprocessing.OneHotEncoder that outputs sparse matrices:
The code would look like this :
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
# Create a fake dataframe
df = pd.DataFrame(
{
"df1": np.random.choice(["a", "b"], 100),
"df2": np.random.choice(["c", "d"], 100)
}
)
dummy_cols = ["df1", "df2"]
# LabelEncode categoricals
for f in dummy_cols:
df[f] = LabelEncoder().fit_transform(df[f])
# Transform to dummies in sparse representation (csr_matrix)
df_dummies = OneHotEncoder().fit_transform(df[dummy_cols])