interpretation of SVD for text mining topic analysis - nlp

Background
I'm learning about text mining by building my own text mining toolkit from scratch - the best way to learn!
SVD
The Singular Value Decomposition is often cited as a good way to:
Visualise high dimensional data (word-document matrix) in 2d/3d
Extract key topics by reducing dimensions
I've spent about a month learning about the SVD .. I must admit much of the online tutorials, papers, university lecture slides, .. and even proper printed textbooks are not that easy to digest.
Here's my understanding so far: SVD demystified (blog)
I think I have understood the following:
Any (real) matrix can be decomposed uniquely into 3 multiplied
matrices using SVD, A=U⋅S⋅V^T
S is a diagonal matrix of singular values, in descending order of magnitude
U and V^T are matrices of orthonormal vectors
I understand that we can reduce the dimensions by filtering out less significant information by zero-ing the smaller elements of S, and reconstructing the original data. If I wanted to reduce dimensions to 2, I'd only keep the 2 top-left-most elements of the diagonal S to form a new matrix S'
My Problem
To see the documents projected onto the reduced dimension space, I've seen people use S'⋅V^T. Why? What's the interpretation of S'⋅V^T?
Similarly, to see the topics, I've seen people use U⋅S'. Why? What's the interpretation of this?
My limited school maths tells me I should look at these as transformations (rotation, scale) ... but that doesn't help clarify it either.
** Update **
I've added an update to my blog explanation at SVD demystified (blog) which reflects the rationale from one of the textbooks I looked at to explain why S'.V^T is a document view, and why U.S' is a word view. Still not really convinced ...

Related

Are the features of Word2Vec independent each other?

I am new to NLP and studying Word2Vec. So I am not fully understanding the concept of Word2Vec.
Are the features of Word2Vec independent each other?
For example, suppose there is a 100-dimensional word2vec. Then the 100 features are independent each other? In other words, if the "sequence" of the features are shuffled, then the meaning of word2vec is changed?
Word2vec is a 'dense' embedding: the individual dimensions generally aren't independently interpretable. It's just the 'neighborhoods' and 'directions' (not limited to the 100 orthogonal axis dimensions) that have useful meanings.
So, they're not 'independent' of each other in a statistical sense. But, you can discard any of the dimensions – for example, the last 50 dimensions of all your 100-dimensional vectors – and you still have usable word-vectors. So in that sense they're still independently useful.
If you shuffled the order-of-dimensions, the same way for every vector in your set, you've then essentially just rotated/reflected all the vectors similarly. They'll all have different coordinates, but their relative distances will be the same, and if "going toward word B from word A" used to vaguely indicate some human-understandable aspect like "largeness", then even after performing your order-of-dimensions shuffle, "going towards word B from word A" will mean the same thing, because the vectors "thataway" (in the transformed coordinates) will be the same as before.
The first thing to understand here is that how word2Vec is formalized. Shifting away from traditional representations of words, the word2vec model tries to encode the meaning of the world into different features. For eg lets say every word in the english dictionary can be manifested in a set of say '4' features. The features could be , lets say "f1":"gender", "f2":"color","f3":"smell","f4":"economy".
So now when a word2vec vector is written , what it signifies is how much manifestation of a particular feature it has. Lets take an example to understand this. Consider a Man(V1) who is dark,not so smelly and is not very rich and is neither poor. Then the first feature ie gender is represented as 1 (since we are taking 1 as male and -1 as female). The second feature color is -1 here as it is exactly opposite to white (which we are taking as 1). Smell and economy are similary given 0.3 and 0.4 values.
Now consider another man(V2) who also has the same anatomy and social status like the first man. Then his word2vec vector would also be similar.
V1=>[1,-1,0.3,0.4]
V2=>[1,-1,0.4,0.3]
This kind of representation helps us represent words into features that are independent or orthogonal to each other.The orthogonality helps in finding similarity or dissimilarity based on some mathematical operation lets say cosine dot product.
The sequence of the number in a word2vec is important since every number represents the weight of a particular feature: gender, color,smell,economy. So shuffling the positions would result in a completely different vector

Simple Binary Text Classification

I seek the most effective and simple way to classify 800k+ scholarly articles as either relevant (1) or irrelevant (0) in relation to a defined conceptual space (here: learning as it relates to work).
Data is: title & abstract (mean=1300 characters)
Any approaches may be used or even combined, including supervised machine learning and/or by establishing features that give rise to some threshold values for inclusion, among other.
Approaches could draw on the key terms that describe the conceptual space, though simple frequency count alone is too unreliable. Potential avenues might involve latent semantic analysis, n-grams, ..
Generating training data may be realistic for up to 1% of the corpus, though this already means manually coding 8,000 articles (1=relevant, 0=irrelevant), would that be enough?
Specific ideas and some brief reasoning are much appreciated so I can make an informed decision on how to proceed. Many thanks!
Several Ideas:
Run LDA and get document-topic and topic-word distributions say (20 topics depending on your dataset coverage of different topics). Assign the top r% of the documents with highest relevant topic as relevant and low nr% as non-relevant. Then train a classifier over those labelled documents.
Just use bag of words and retrieve top r nearest negihbours to your query (your conceptual space) as relevant and borrom nr percent as not relevant and train a classifier over them.
If you had the citations you could run label propagation over the network graph by labelling very few papers.
Don't forget to make the title words different from your abstract words by changing the title words to title_word1 so that any classifier can put more weights on them.
Cluster the articles into say 100 clusters and then choose then manually label those clusters. Choose 100 based on the coverage of different topics in your corpus. You can also use hierarchical clustering for this.
If it is the case that the number of relevant documents is way less than non-relevant ones, then the best way to go is to find the nearest neighbours to your conceptual space (e.g. using information retrieval implemented in Lucene). Then you can manually go down in your ranked results until you feel the documents are not relevant anymore.
Most of these methods are Bootstrapping or Weakly Supervised approaches for text classification, about which you can more literature.

Applied NLP: how to score a document against a lexicon of multi-word terms?

This is probably a fairly basic NLP question but I have the following task at hand: I have a collection of text documents that I need to score against an (English) lexicon of terms that could be 1-, 2-, 3- etc N-word long. N is bounded by some "reasonable" number but the distribution of various terms in the dictionary for various values of n = 1, ..., N might be fairly uniform. This lexicon can, for example, contain a list of devices of certain type and I want to see if a given document is likely about any of these devices. So I would want to score a document high(er) if it has one or more occurrences of any of the lexicon entries.
What is a standard NLP technique to do the scoring while accounting for various forms of the words that may appear in the lexicon? What sort of preprocessing would be required for both the input documents and the lexicon to be able to perform the scoring? What sort of open-source tools exist for both the preprocessing and the scoring?
I studied LSI and topic modeling almost a year ago, so what I say should be taken as merely a pointer to give you a general idea of where to look.
There are many different ways to do this with varying degrees of success. This is a hard problem in the realm of information retrieval. You can search for topic modeling to learn about different options and state of the art.
You definitely need some preprocessing and normalization if the words could appear in different forms. How about NLTK and one of its stemmers:
>>> from nltk.stem.lancaster import LancasterStemmer
>>> st = LancasterStemmer()
>>> st.stem('applied')
'apply'
>>> st.stem('applies')
'apply'
You have a lexicon of terms that I am going to call terms and also a bunch of documents. I am going to explore a very basic technique to rank documents with regards to the terms. There are a gazillion more sophisticated ways you can read about, but I think this might be enough if you are not looking for something too sophisticated and rigorous.
This is called a vector space IR model. Terms and documents are both converted to vectors in a k-dimensional space. For that we have to construct a term-by-document matrix. This is a sample matrix in which the numbers represent frequencies of the terms in documents:
So far we have a 3x4 matrix using which each document can be expressed by a 3-dimensional array (each column). But as the number of terms increase, these arrays become too large and increasingly sparse. Also, there are many words such as I or and that occur in most of the documents without adding much semantic content. So you might want to disregard these types of words. For the problem of largeness and sparseness, you can use a mathematical technique called SVD that scales down the matrix while preserving most of the information it contains.
Also, the numbers we used on the above chart were raw counts. Another technique would be to use Boolean values: 1 for presence and 0 zero for lack of a term in a document. But these assume that words have equal semantic weights. In reality, rarer words have more weight than common ones. So, a good way to edit the initial matrix would be to use ranking functions like tf-id to assign relative weights to each term. If by now we have applied SVD to our weighted term-by-document matrix, we can construct the k-dimensional query vectors, which are simply an array of the term weights. If our query contained multiple instances of the same term, the product of the frequency and the term weight would have been used.
What we need to do from there is somewhat straightforward. We compare the query vectors with document vectors by analyzing their cosine similarities and that would be the basis for the ranking of the documents relative to the queries.

Euclidean vs Cosine for text data

IF I use tf-idf feature representation (or just document length normalization), then is euclidean distance and (1 - cosine similarity) basically the same? All text books I have read and other forums, discussions say cosine similarity works better for text...
I wrote some basic code to test this and found indeed they are comparable, not exactly same floating point value but it looks like a scaled version. Given below are the results of both the similarities on simple demo text data. text no.2 is a big line of about 50 words, rest are small 10 word lines.
Cosine similarity:
0.0, 0.2967, 0.203, 0.2058
Euclidean distance:
0.0, 0.285, 0.2407, 0.2421
Note: If this question is more suitable to Cross Validation or Data Science, please let me know.
If your data is normalized to unit length, then it is very easy to prove that
Euclidean(A,B) = 2 - Cos(A,B)
This does hold if ||A||=||B||=1. It does not hold in the general case, and it depends on the exact order in which you perform your normalization steps. I.e. if you first normalize your document to unit length, next perform IDF weighting, then it will not hold...
Unfortunately, people use all kinds of variants, including quite different versions of IDF normalization.

Systematic threshold for cosine similarity with TF-IDF weights

I am running an analysis of several thousand (e.g., 10,000) text documents. I have computed TF-IDF weights and have a matrix with pairwise cosine similarities. I want to treat the documents as a graph to analyze various properties (e.g., the path length separating groups of documents) and to visualize the connections as a network.
The problem is that there are too many similarities. Most are too small to be meaningful. I see many people dealing with this problem by dropping all similarities below a particular threshold, e.g., similarities below 0.5.
However, 0.5 (or 0.6, or 0.7, etc.) is an arbitrary threshold, and I'm looking for techniques that are more objective or systematic to get rid of tiny similarities.
I'm open to many different strategies. For example, is there a different alternative to tf-idf that would make most of the small similarities 0? Other methods to keep only significant similarities?
In short, take the average cosine value of an initial clustering or even all of the initial sentences and accept or reject clusters based on something akin to the following.
One way to look at the problem is to try and develop a score based on a distance from the mean similarity (1.5 standard deviations (86th percentile if the data were normal) tends to mark an outlier with 3 (99.9th percentile) being an extreme outlier), taking the high end for good measure. I cannot remember where, but this idea has had traction in other forums and formed the basis for my similarity.
Keep in mind that the data is not likely to be normally distributed.
average(cosine_similarities)+alpha*standard_deviation(cosine_similarities)
In order to obtain alpha, you could use the Wu Palmer score or another score as described by NLTK. Strong similarities with Wu Palmer should lead to a larger range of acceptance while lower Wu Palmer scores should lead to a more strict acceptance. Therefore, taking 1-Wu Palmer score would be adviseable. You can even use this method for LSA or LDA groups. To be even more strict and take things close to 1.5 or more standard deviations, you could even try 1+Wu Palmer (the cream of the crop), re-find the ultimate K,find the new score, cluster, and repeat.
Beware though, this would mean finding the Wu Palmer of all relevant words and is quite a large computational problem. Also, 10000 documents is peanuts compared to most algorithms. The smallest I have seen for tweets was 15,000 and the 20 news groups set was 20,000 documents. I am pretty sure Alchemy API uses something akin to the 20 news groups set. They definitely use senti-wordnet.
The basic equation is not really mine so feel free to dig around for it.
Another thing to keep in mind is that the calculation is time intensive. It may be a good idea to use a student t value for estimating the expected value/mean wu-palmer score of SOV pairings and especially good if you try to take the entire sentence. Commons Math3 for java/scala includes the distribution as does scipy for python and R should already have something as well.
Xbar +/- tsub(alpha/2)*sample_std/sqrt(sample_size)
Note: There is another option with this weight. You could use an algorithm that adds or subtracts from this threshold until achieving the best result. This would likely not be related solely to the cosine importance but possibly to an inflection point or gap as with Tibshirani's gap statistic.

Resources