I have a DataSet which was constructed in the following way:
Encoder<MyDomain> encoder= Encoders.bean(MyDomain.class);
Dataset<MyDomain> stdDS = sc.createDataset(filteredRecords.rdd(), encoder);
Dataset<Row> rowDataset = stdDS.withColumn("idHash", stdDS.col("id").substr(0, 5));
I am then trying to output the dataset by doing:
rowDataset.write().partitionBy("keep", "idHash").save("test.parquet");
When I only partition by "keep" everything works correctly, then I partition by both "keep" and "idHash" I get:
File already exists: file:/C:/dev/test.parquet/_temporary/0/_temporary/attempt_201701191219_0001_m_000000_0/keep=true/idHash=0a/part-r-00000-2c2e0494-f6a7-47d7-88e2-f49dffb608d1.snappy.parquet
How can I get my DataSet to properly output using multiple partitions. The folder is empty to start with. Also this error is happening when I run on my local machine, in production this data will be output to S3 so any solution needs to work both against a local filesystem and AWS S3.
Thanks,
Nathan
Try
rowDataset.repartition("keep", "idHash").write().partitionBy("keep", "idHash").save("test.parquet");
Related
I am reading a dataset dataset1 and dataset2 from S3 locations. I then transform them and write back to the same location where dataset2 was read from.
However, I get below error message:
An error occurred while calling o118.save. No such file or directory 's3://<myPrefix>/part-00001-a123a120-7d11-581a-b9df-bc53076d57894-c000.snappy.parquet
If I try to write to a new S3 location e.g. s3://dataset_new_path.../ then the code works fine.
my_df \
.write.mode('overwrite') \
.format('parquet') \
.save(s3_target_location)
Note: I have tried using .cache() after reading in the dataframe but still get the same error.
The reason this causes a problem is that you are reading and writing to the same path that you are trying to overwrite. It is standard Spark issue and nothing to do with AWS Glue.
Spark uses lazy transformation on DF and it is triggered when certain action is called. It creates DAG to keep information about all transformations which should be applied to DF.
When you read data from same location and write using override, 'write using override' is action for DF. When spark sees 'write using override', in it's execution plan it adds to delete the path first, then trying to read that path which is already vacant; hence error.
Possible workaround would be to write to some temp location first and then using it as source, override in dataset2 location
I am using spark streaming and I want to save each batch of spark streaming on my local in Avro format. I have used saveAsNewAPIHadoopFile to save data in Avro format. This works well. But it overwrites the existing file. Next batch data will overwrite the old data. Is there any way to save Avro file in common directory? I tried by adding some properties of Hadoop job conf for adding a prefix in the file name. But not working any properties.
dstream.foreachRDD {
rdd.saveAsNewAPIHadoopFile(
path,
classOf[AvroKey[T]],
classOf[NullWritable],
classOf[AvroKeyOutputFormat[T]],
job.getConfiguration()
)
}
Try this -
You can make your process split into 2 steps :
Step-01 :- Write Avro file using saveAsNewAPIHadoopFile to <temp-path>
Step-02 :- Move file from <temp-path> to <actual-target-path>
This will definitely solve your problem for now. I will share my thoughts if I get to fulfill this scenario in one step instead of two.
Hope this is helpful.
I have some results from a Spark application saved in the HDFS as files called part-r-0000X (X= 0, 1, etc.). And, because I want to join the whole content in a file, I'm using the following command:
hdfs dfs -getmerge srcDir destLocalFile
The previous command is used in a bash script which makes empty the output directory (where the part-r-... files are saved) and, inside a loop, executes the above getmerge command.
The thing is I need to use the resultant file in another Spark program which need that merged file as input in the HDFS. So I'm saving it as local and then I upload it to the HDFS.
I've thought another option which is write the file from the Spark program in this way:
outputData.coalesce(1, false).saveAsTextFile(outPathHDFS)
But I've read coalesce() doesn't help with the performance.
Any other ideas? suggestions? Thanks!
You wish to merge all the files into a single one so that you can load all the files at once into a Spark rdd, is my guess.
Let the files be in Parts(0,1,....) in HDFS.
Why not load it with wholetextFiles, which actually does what you need.
wholeTextFiles(path, minPartitions=None, use_unicode=True)[source]
Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file.
If use_unicode is False, the strings will be kept as str (encoding as utf-8), which is faster and smaller than unicode. (Added in Spark 1.2)
For example, if you have the following files:
hdfs://a-hdfs-path/part-00000 hdfs://a-hdfs-path/part-00001 ... hdfs://a-hdfs-path/part-nnnnn
Do rdd = sparkContext.wholeTextFiles(“hdfs://a-hdfs-path”), then rdd contains:
(a-hdfs-path/part-00000, its content) (a-hdfs-path/part-00001, its content) ... (a-hdfs-path/part-nnnnn, its content)
Try SPARK BucketBy.
This is a nice feature via df.write.saveAsTable(), but this format can only be read by SPARK. Data shows up in Hive metastore but cannot be read by Hive, IMPALA.
The best solution that I've found so far was:
outputData.saveAsTextFile(outPath, classOf[org.apache.hadoop.io.compress.GzipCodec])
Which saves the outputData in compressed part-0000X.gz files under the outPath directory.
And, from the other Spark app, it reads those files using this:
val inputData = sc.textFile(inDir + "part-00*", numPartition)
Where inDir corresponds to the outPath.
I am creating a dataframe from existing hive table.Table is partitioned on date and site column.Now, when i am trying to overwrite the data in this same table after some computation with previous day data.It is successfully getting loaded.
But when i am trying to write final dataframe at S3 bucket. I am getting error saying file not found.Now the file it is mentioning is previous day file which is now overwritten.
If i write dataframe first and then overwrite table then its running fine.
For writing at S3 location , what it has to do with table partition file?
Below is the error and code.
java.io.FileNotFoundException: No such file or directory: s3://bucket_1/DM/web_fact_tbl/local_dt=2018-05-10/site_name=ABC/part-00000-882a6e29-eb6a-477c-8b88-6fe853956674.c000
fact_tbl = spark.table('db.web_fact_tbl')
fact_lkp = fact_tbl.filter(fact_tbl['local_dt']=='2018-05-10')
fact_join = fact_lkp.alias('a').join(fact_tbl.alias('b'),(col('a.id') == col('b.id')),"inner").select('a.*')
fact_final = fact_join.union(fact_tbl)
fact_final.coalesce(2).createOrReplaceTempView('cwf')
spark.sql('INSERT OVERWRITE TABLE dm.web_fact_tbl PARTITION (local_dt, site_name) \
SELECT * FROM cwf')
fact_final.write.csv('s3://bucket_1/yahoo')
Before last line fact_final is just a "lazy" dataframe object that contains definitions only. It does not contain any data. But it has pointer to exact data files, where data is stored actually.
When you try to perform actual operations (does not matter it's writing to S3, or executing query like fact_final.count()) you'll get the error as above. It looks like partition local_dt=2018-05-10 does not exists anymore (files/folder that sits behind it does not exists).
You can try to re-initialize dataframe once again, before final write (it's another lazy operation - all work is done in your case while you writing it on S3).
I have a directory in an azure data lake that has the following path:
'adl://home/../psgdata/clusters/iptiqadata-prod-cluster-eus2-01/psgdata/mib'
Within this directory there are a number of other directories (50) that have the format 20190404.
The directory 'adl://home/../psgdata/clusters/iptiqadata-prod-cluster-eus2-01/psgdata/mib/20180404' contains 100 or so xml files which I am working with.
I can create an rdd for each of the sub-folders which works fine, but ideally I want to pass only the top path, and have spark recursively find the files. I have read other SO posts and tried using a wildcard thus:
pathWild = 'adl://home/../psgdata/clusters/iptiqadata-prod-cluster-eus2-01/psgdata/mib/*'
rdd = sc.wholeTextFiles(pathWild)
rdd.count()
But it just freezes and does nothing at all, seems to completely destroy the kernel. I am working in Jupyter on Spark 2.x. New to spark. Thanks!
Try this:
pathWild = 'adl://home/../psgdata/clusters/iptiqadata-prod-cluster-eus2-01/psgdata/mib/*/*'