PCIe device discovery algorithm pseudo code - verilog

I have a PCIe model written in System Verilog, although I think this question is language agnostic. The model performs PCIe configuration reads and writes and memory reads and writes perfectly in simulation. However, what I need to do is "discover" my PCIe device and configure my config space registers in simulation. Is there a boiler plate chunk of pseudo code that represents the Linux PCIe enumeration process that I can just add my own models transactions functions too so that I can get a "Bus walk", followed by BAR programming, SR-IOV enable if discovered, MSIx config? It seems like this would be a common exercise for PCIe device so maybe there is model.

It isn't terribly difficult to do. Basically you loop through the config space, checking for each each possible device on the first root bus 0. When a device is found, you allocate a memory space for it based on its requested size and program the BARs accordingly. If you find any bridges, you also configure and enable them - the basic bridge registers for this are standard. This includes assigning the upstream and downstream bus numbers, which then allows you to enumerate the new downstream bus, and so on.
I had to do this once to access a PCI I/O card on a system that had no OS or other software environment. It wasn't too bad and that was across two bridges from two vendors, as well as the I/O card registers and the CPU bus root bridge setup. This was PCI, not PCIe, but it would be very much the same. You could even do it with completely hard-coded numbers if the hardware never changed, but in my case there were a couple variants so I actually had to do some simple enumeration to find the device numbers dynamically. One gotcha is that you may have to delay a bit, or retry, to give all the devices time to come online before you try to access them.
In doing that I found this book to be invaluable: PCI System Architecture (4th Edition). I notice there is also an version for PCIe: PCI Express System Architecture (1st Edition). I would definitely get one of those if you haven't already. These books contain detailed algorithms and explanations about how to do all of this. At the time I didn't really use or refer to any code to speak of, but...
The best code resource I have found is U-Boot. It operates at a similarly low-level and is totally self contained and is still fairly small and as simple as possible. For example, the enumeration appears to start with the function pci_init() calls a board specific pci_xxx_init(). This then sets up the root bridge and then calls pci_hose_scan_bus() in drivers/pci/pci.c to do the real work. Also check out the routines in drivers/pci/pci_auto.c, as well as the rest of the folder.
For your task you probably only need a very small subset and could just hack out parts of these files into a simple driver. Basically a for() loop and some pci_read/write_config() calls with logic to recognize your device and bridge IDs.

Related

Getting ARM/WM8350 audio and power management working in linux

I have a rooted Sony prs900, running a linux 2.6.23 #2 PREEMPT kernel, for ARMv6. (Montavista linux kernel). I'm having problems with figuring out how power management works, both for running the system and for powering up and down the audio port.
I can neither figure out how to read the battery/powerline status information, nor get the audio chip to play sound, etc ... although I have been studying the kernel modules for a while...
It's worth a little money for help, say $100 paypal donation to an email account, (or more if this takes a long time...) for the first person able to explain to me how to do them in a way that works.
Eg: read battery status, and change some power modes like getting the audio amplifiers to power up/down so that the audio played to /dev/dsp (oss emulation) actually comes out as sound rather than just being consumed by the chip and ignored...
The actual sony kernel, and binary packages of cross compiler tools are located on the main page. Actual kernel sourcecode is also available.
What I have learned so far myself :
The sony is using a wolfson micro WM8350 audio driver and battery charger/power management chip for all the system's power; eg: it can power down/up the SD memory cards, send more power to the cpu, power up audio amplifiers, etc. See: WM8350 Datasheet.
Pretty much, the whole problem revolves around getting the WM8350 kernel drivers to work...
Although the company brags quite a bit about it's support under linux, they don't have any application notes or examples that are actually helpful that I can find, other than the datasheet. I suspect the kernel drivers I have are beta code, because they don't seem to be behaving well (several error messages in the kernel log about wm8350 registers not being readable happen at every boot even when running only the sony's native software...).
The kernel driver's source-code of most interest are in: linux-2.6.23_091126/drivers/mxc/pmic/{core,wm8350}
Notice, the wm8350 is a competitor to the MC14783, but the linux kernel drivers use the same {core} driver source code for both chips; The sony ONLY has the wm8350 on it -- there is no MC14783 present.
The code that I most want most desperately to understand how to make operate is found in the subdirectory {wm8350}, eg: wm8350/wm8350pm/power_supply_sysfs.c.
I want the audio to fire up too, but 'm not quite sure where the pertinent audio amplifier code is yet...
Very clearly the wm8350pm code is designed to export a /sys directory interface; right now /sys is mounted and operational on the system; but I'm not very familiar with the semantics of these newer style interfaces... they aren't quite like the old APM power interfaces for Linux laptops...
First I checked the obvious:
If I do a "cat /sys/power/state" it returns the word "mem" and nothing else.
The file has permissions -rw-r--r--, so potentially it could be written -- but I don't know with what. The string "mem" does not exist anywhere in the source code for the wm8350pm drivers, so I don't even know if /sys/power/state is part of the source code.
Doing a find /sys -iname "wm8350" reveals a handful of directories with the patterns:
wm8350-rtc , wm8350-pmic , wm8350-bl , wm8350-power , wm8350-led
wm8350-hifi-dai , wm8350-codec
wm8350-imx32ads.0
So, I do an ls-l on each directory, and look for actual files rather than symbolic links or subdirectories, and what I find are stock useless writable files: bind, unbind, uevent,
and a very few read only files: pmic_reg, dapm_widget, modalias, codec_reg which aren't very helpful.
It's no surprise that:
Doing: cat /sys/devices/platform/wm8350-ebx5016-audi/modalias gives "wm8350-ebx5016-audio"
Doing: cat /sys/devices/platform/wm8350-imx32ads.0/modalias gives "wm8350-imx32ads"
and since audio is off... Doing: cat /sys/devices/platform/wm8350-ebx5016-audi/dapm_widget reveals the audio state:
Headphone Jack: Off
Line In Jack: On
Mic Bias: Off
Left DAC: Off
Right DAC: Off
... (all else off and omitted except )...
EBX5016-hifi: PM State: D3hot
The last two files, I expect should do wm8350 chip register dumps... and one did.
Doing: cat /sys/devices/wm8350-pmic/pmic-reg causes a long pause, then nothing is printed.
but:
Doing: cat /sys/devices/wm8350/platform/wm8350-ebx5016-audi/wm8350-codec/codec_reg does prints a list of registers up to e8 which is just a few bytes larger than the datasheet says the chip should be (0x00 to 0xe6).
I tried using a python program to play wav files, (works on my desktop computer), and I noticed that /dev/dsp does open, the mixers DO set volume levels, and nothing comes out. So -- the audio driver is not able to enable the sound amplifiers on it's own automatically.
There are no alsa sound files in /dev, nor are any alsa tools found on the embedded machine... so I assume Sony is strictly using OSS /dev/dsp and /dev/mixer.
There is only one other access point I can find to the ws8350:
There IS a device driver /dev/wm8350.
That driver created by the source code in subdirectory wm8350/wm8350_reg.c ; in theory it should be able to read and write to all registers using ioctls() calls from a user space. However, something appears grossly wrong with it, for I wrote a test program to read the wm8350 registers... and most of the registers return error messages rather than allowing to be read, including the most pulic ID registers (0x00, 0x01) etc.
So, I'm quite stuck. Pointers, thoughts, hints, are quite desired.
I would like to change your question a little bit.
How does Linux ASOC (alsa system on chip) power management work?
I will answer this and then give some hints on using this specific chip.
.. If I do a cat /sys/power/state it returns the word "mem" and nothing else. The file has permissions -rw-r--r--, so potentially it could be written -- but I don't know with what. The string "mem" does not exist anywhere in the source code for the wm8350pm drivers, so I don't even know if /sys/power/state is part of the source code.
You need to get an understanding of the Linux driver model. Hardware in Linux is structured like a tree. The rational is that things must be powered up/down in specific sequences. For instance, you should not power down the PCI bus controller before powering down the PCI peripherals. Linux builds a tree of hardware and each driver (code) and device (data/actual hardware) has specific call backs/function pointers which handle some specific tasks.
probe - Are you there? Determines actual hardware/device is present.
remove - Shuts down device. Module removal, power off, etc.
suspend - going to sleep.
resume - waking up.
Three and four may look interesting to you. Now, to read about what /sys/power/state is about. The text mem, means that suspend to memory is supported by your system. In this mode, Linux does these steps,
Find first lowest level active bus.
suspend devices on that bus.
suspend bus and de-activate.
If a bus is active go to step 1.
Set CPU to low power state (suspend to RAM).
This is not quite the full story. A few devices may support a wake-up. They will have extra call-backs to enable waking the system from sleep modes. Read the documentation to find out about this.
That is general power management and driver/device structure. Now, how is the ASOC (alsa system on chip) structured?
There are typically three drivers/devices that get stitched together.
Codec - The wm8350 in your case. This includes audio amplifier drive circuitry and can include sound mixing and source controls. Supports digital to analog and analog to digital, typically through an i2s interface. The i2s is not the only interface. Usually a register bank is controlled through a secondary interface; i2c in the wm8350 case.
DAI - Refer to chapter 1.2.18.1 of the iMx31 reference manual; the hardware is called the SSI by Freescale. The next chapter on the AUDMUX is also useful to understand audio support on the iMx31/32.
Machine file - this is the board specific routing. It hooks the DAI to the codec and is the parent of both. It provides board clocking information and other specific configuration. For instance, it may use the AUDMUX to route the physical pins to the SSI block.
An i2c (or SPI) interface from the codec driver to send control commands to the coded chip. Some chips might uses a wacky i2s interface or something else for control (but not in your case).
Now if you understood this, you will see that some features of the wm8350 seem to break the Linux model. The DAI interface can be stopped (digital audio), but the i2c interface must remain alive to program the registers related to the power functionality in the codec/PMIC (power management IC).
The latest WM8350 calls the IC a multi-function device and support was introduced in 2.6.35. The initial support may not have included the WM8350 features. Unfortunately, without some details on the layout of the Sony prs900 board, it would be difficult to know how to use the WM8350 PMIC functionality. The code will involve the iMx31 CPU, the WM8350, the i2c connection, and possibly some power supply circuitry.
For certain, you can just try echo mem > /sys/power/state and see what happens. If it works, you are lucky. The power/current consumption in sleep might not be optimal, but it will probably be hard to fix with the 2.6.23 kernel. You will want to look through the /sys directories for wake-up sources and possibly register these before issuing the suspend to memory command.
I can neither figure out how to read the battery/powerline status information, nor get the audio chip to play sound, etc ... although I have been studying the kernel modules for a while...
From the above discussions, the battery and powerline status will probably be found through another device. However, the pmic_reg file may actually give the status if things are connected properly on the board.
The audio chip will use ALSA. You need to use either alsamixer or the command line amixer to set up audio routes through the codec, so the DAI channel (PCM from iMx32) is routed and sent to the speaker. To minimize power consumption, things are usually turned off by default. The /dev/dsp files are just OSS compatibility. This configuration will support ALSA natively. You are better off to use ALSA if possible.
Donate to the OSF and get a tax receipt, if this was helpful enough.

How to generate a steady 37kHz GPIO trigger from inside linux kernel?

I have a micro controller taking care of infrared TX-carrier wave generation currently, but I started wondering if I could dispose of it, and do this work in linux side - thus bringing the cost of my embedded system down.
I'm running on a Freescale i.mx233 (454MHz ARM9), and if I access registry directly through /dev/mem, I can achieve quite steady 5MHz triggering to a GPIO pin.
Since I need 37kHz, I started looking ways of slowing it down, but it seems that at least nanowait() is way too rough for this purpose.
I found one solution of calling rand() in a for loop, and I seem to be able to generate 38,4kHz signal quite well, However there is some unacceptable jitter from time to time according to oscilloscope. (I understand that this is quite a bit waste of resources, but when the TX needs to be done, the system has no other tasks really)
My questions:
Freescales kernel code (3.8 branch) doesn't have CONFIG_PREEMPT_RT patches, so that is one thing maybe I should look into, but before that:
Could I achieve more accurate performance, by writing a kernel module to drive the GPIO from inside the kernel ? I do need to read up on some data from user space (data to be sent), but other than that, I only need to trigger the led on specified frequency at the end of the GPIO, so the driver should be pretty simple.
Can I force the priority of my driver, so that other tasks don't interrupt this gpio triggering ? (data sending takes currently roughly 400ms, and it's done very seldom)
Is there some better way to create an interrupt say every 37kHz, so that I don't stall the system by SW ?
Micro controller is perfect for this kind of tasks, but it would be nice to avoid this cost overhead if possible...
The i.MX23 PWM in "Multi-Chip Attachment Mode" is designed exactly for this requirement.
Use one of the PWM's in "Multi-Chip Attachment Mode", for example, assuming you are using a 24Mhz clock, with
MATT=1 (Enable multi-chip attachment mode)
MATT_SEL=1 (User 24Mhz clock)
CDIV=0x2 (or DIV_4, i.e. divide by 4)
INACTIVE_STATE=0x2 or 0x3
ACTIVE_STATE=0x3 or 0x2
PERIOD=175 (i.e 176-1)
If you use a 32Mhz clock you will need other CDIV and PERIOD parameters to get to 34Khz.
See the "i.MX23 Applications Processor Reference Manual" for example code. If I am not mistaken the driver code is in arch/arm/plat-mxc/pwm.c but it doesn't seem to support the MATT mode. You will probably have to extend the code yourself.
Regarding the implementation -
The above answer relates to the CPU only. In practice, the ability to implement the idea depends on the board design. The board would need a header (pins for external connection) that connects to a GPIO pin that can be connected via the pinmux to one of the PWMs. I would assume that most reference designs would have at least one PWM configurable GPIO exposed through a header. The the question is if there is only one and if you are already using it for some other control purpose.
After determining that there is a header with a free PWM configurable GPIO, you need to configure the pin mux and activate the PWM. There are instructions for this in the processor reference manual noted above. Most systems do this configuration in the boot loader board_init() (assuming U-boot), although it can probably be done in userspace also with some mmap trickery after Linux boots.
Finally you would need to write a driver based on the interface to the PWM module in platform-mxc_pwm.c.
If you are using the i.MX23 EVK 10.05 you might be able to modify the LED PWM driver since it is already configured at the level of the bootloader and kernel and connect your device to the LED output instead of the LED. (You will need a hardware technician to help you with this.) Make sure you config the kernel with the CONFIG_LEDS_MXS.
The above comments regarding implementation are somewhat speculative since I don't know the EVK. Perhaps someone who knows it can improve on this.
Update September 21, 2013
Another way to generate a 37kHz signal with the i.MX23 or with any SoC with a similar ARM CPU core is to use an unused on-chip timer to generate a FIQ interrupt at the required frequency and write a FIQ interrupt handler to toggle a GPIO pin. Maxime Ripard posted a complete example of this method using the i.MX28 SoC on his Free Electrons blog on April 30 this year. To use this method you will need both an unused timer and not be using the FIQ interrupt for another purpose such as one of the SPI, camera, or brownout-detection drivers that use the ARM FIQ. You will also need to write the ISR in ARM assembler.
The best way to get a 37 kHz signal would be to find some serial/audio/PWM output that can generate it in hardware.
It might be possible to raise the priority of your userspace process, but this won't help against interrupts or high-priority kernel tasks.
An RT kernel would allow you to get priority over more kernel tasks, but wouldn't help against all interrupts.
I don't know if you will be able to get the maximum latency below 37 kHz (27 µs); I think it's unlikely.
Doing this in the kernel would help because you could disable interrupt handling.
However, disabling interrupts for as long as 400 ms is frowned upon.

What does an mfd_cell structure describe in a linux kernel driver. Is it describing sub devices or a hierarchy node for sub-devices

I have been trying to understand the mfd framework in linux kernel to write my drivers but there seems to be hardly any documentation and the mfd core itself doesnt seem to have much helpful comments. So, I am trying to understand what the mfd_cell structure describes. That seems to be the basis here. What I m particularly interested in finding out is if this used as a general abstraction for 'x' number of sub-devices or is it intended/useful for a full hierarchy of sub-devices.
An MFD is a device that contains several sub-devices. For instance, in embedded systems a PMIC usually contains a battery manager, a charger and sometimes devices with unrelated functions like a USB PHY, an Audio codec, a Real-Time Clock, ...
A cell is meant to describe a sub-device. The mfd subsystem will use the information registered in that structure to create a platform device for each sub-device, along with the platform_data for the sub-device.
You can specify more advanced things like the resources used by this device and suspend-resume operations (to be called from the driver for the sub-device).
The new platform devices that are created will have the cell structure as their platform data and can access the real platform data through cell->platform_data.

Is forcing I2C communication safe?

For a project I'm working on I have to talk to a multi-function chip via I2C. I can do this from linux user-space via the I2C /dev/i2c-1 interface.
However, It seems that a driver is talking to the same chip at the same time. This results in my I2C_SLAVE accesses to fail with An errno-value of EBUSY. Well - I can override this via the ioctl I2C_SLAVE_FORCE. I tried it, and it works. My commands reach the chip.
Question: Is it safe to do this? I know for sure that the address-ranges that I write are never accessed by any kernel-driver. However, I am not sure if forcing I2C communication that way may confuse some internal state-machine or so.(I'm not that into I2C, I just use it...)
For reference, the hardware facts:
OS: Linux
Architecture: TI OMAP3 3530
I2C-Chip: TWL4030 (does power, audio, usb and lots of other things..)
I don't know that particular chip, but often you have commands that require a sequence of writes, first to one address to set a certain mode, then you read or write another address -- where the function of the second address changes based on what you wrote to the first one. So if the driver is in the middle of one of those operations, and you interrupt it (or vice versa), you have a race condition that will be difficult to debug. For a reliable solution, you better communicate through the chip's driver...
I mostly agree with #Wim. But I would like to add that this can definitely cause irreversible problems, or destruction, depending on the device.
I know of a Gyroscope (L3GD20) that requires that you don't write to certain locations. The way that the chip is setup, these locations contain manufacturer's settings which determine how the device functions and performs.
This may seem like an easy problem to avoid, but if you think about how I2C works, all of the bytes are passed one bit at a time. If you interrupt in the middle of the transmission of another byte, results can not only be truly unpredictable, but they can also increase the risk of permanent damage exponentially. This is, of course, entirely up to the chip on how to handle the problem.
Since microcontrollers tend to operate at speeds much faster than the bus speeds allowed on I2C, and since the bus speeds themselves are dynamic based on the speeds at which devices process the information, the best bet is to insert pauses or loops between transmissions that wait for things to finish. If you have to, you can even insert a timeout. If these pauses aren't working, then something is wrong with the implementation.

how to access sound card in linux using nasm

hello i want to know how i can access sound card from nasm assembly program using int 0x80.
and also what values should i put in the registers when to access the sound card.
is there any manual or something that has details about the arguments that we have to pass to the kernel to access the sound card or other hardware devices, please if anyone know please tell me.
i had done alot of searching and well there alot of c libraries and ALSA and OSS and stuff like that, but what i would like is that if any one know of some resources about learning from the basics up about assembly program interfacing with the hardware.
and if any one could give me a small code listing as to how the access is done i would be very thankful.
As you've observed, the interface between user-space and kernel space in Linux is INT 0x80.
In Unix, as a matter of philosophy, (almost) everything is a file, thus sound cards are treated as "Character Files." The kernel syscalls are as per the POSIX specification - so "open","close","ioctl","read","write".
Access to the soundcard is done through the driver interface, as a file under "/dev/". Some sample documentation is at OSS documentation, but I'm not sure if its current.
To observe this communication, you can use 'strace' to see what system calls are being used by any existing application.
You will likely see a sequence like:
open("/dev/dsp", ... )
ioctl()
write()
...
write()
close()
Usually you'd get to "open" through the C library, but since you want to skip that, you can find the syscalls a few ways - one way would be
objdump -d /usr/lib/libc.a
For example, you can find that open is syscall 0x5 by looking for <__libc_open>:
You'll notice that eax is 5, and the rest of the parameters are in ebx, ecx and edx.
(The usage and parameters are also listed on Linux Syscalls )
This is what sound card drivers do. They have to be custom written for each sound card, in order to implement a common API which can be used by the O/S or applications. The same goes for other hardware devices. Hardware manufacturers tend to be less than open about how to access their stuff at this level (for one thing).
Not that I'm a Linux expert, but this is a fairly fundamental issue with all O/S's.
From user mode, this won't work - you won't have direct access to the sound hardware.
If you create a kernel-mode driver, you'd be able to directly poke the sound card hardware, but at this point I think most vendors have different implementations and don't follow a consistent standard. Newer sound cards might still be Adlib & SoundBlaster 16 compatible - this was the hardware standard WAY back when games were targetting DOS and directly used the hardware, but I wouldn't be surprised if this is no longer valid. A quick search should yield ways to directly access the interface for these legacy cards. Alternatively, you could run DOS inside of a virtual machine and access the hardware - most virtual machines emulate this level of sound card.
Depending what you're trying to do, you're probably better off using an existing library to handle the interface to the sound card, unless you aim to write a sound card driver, which I doubt, and that would be best done in C on linux.
Portaudio is one (free) one that's relatively easy to use. one example lib using portaudio with a C interface (I'm the author of wwviaudio).
FMOD seems to be big with the game programming guys, though it's not free.
sdl mixer is another one that's big with the linux game developers.
JACK is big in the linux pro-audio world. (think ardour -- the linux answer to Protools.)
There's no sense in trying to talk to the audio hardware directly from user space.

Resources