Point Free Style Required for Optimized Curry - haskell

Say we have a (contrived) function like so:
import Data.List (sort)
contrived :: Ord a => [a] -> [a] -> [a]
contrived a b = (sort a) ++ b
And we partially apply it to use elsewhere, eg:
map (contrived [3,2,1]) [[4],[5],[6]]
On the surface, this works as one would expect:
[[1,2,3,4],[1,2,3,5],[1,2,3,6]]
However, if we throw some traces in:
import Debug.Trace (trace)
contrived :: Ord a => [a] -> [a] -> [a]
contrived a b = (trace "sorted" $ sort a) ++ b
map (contrived $ trace "a value" [3,2,1]) [[4],[5],[6]]
We see that the first list passed into contrived is evaluated only once, but it is sorted for each item in [4,5,6]:
[sorted
a value
[1,2,3,4],sorted
[1,2,3,5],sorted
[1,2,3,6]]
Now, contrived can be rather simply translated to point-free style:
contrived :: Ord a => [a] -> [a] -> [a]
contrived a = (++) (sort a)
Which when partially applied:
map (contrived [3,2,1]) [4,5,6]
Still works as we expect:
[[1,2,3,4],[1,2,3,5],[1,2,3,6]]
But if we again add traces:
contrived :: Ord a => [a] -> [a] -> [a]
contrived a = (++) (trace "sorted" $ sort a)
map (contrived $ trace "a value" [3,2,1]) [[4],[5],[6]]
We see that now the first list passed into contrived is evaluated and sorted only once:
[sorted
a value
[1,2,3,4],[1,2,3,5],[1,2,3,6]]
Why is this so? Since the translation into pointfree style is so trivial, why can't GHC deduce that it only needs to sort a once in the first version of contrived?
Note: I know that for this rather trivial example, it's probably preferable to use pointfree style. This is a contrived example that I've simplified quite a bit. The real function that I'm having the issue with is less clear (in my opinion) when expressed in pointfree style:
realFunction a b = conditionOne && conditionTwo
where conditionOne = map (something a) b
conditionTwo = somethingElse a b
In pointfree style, this requires writing an ugly wrapper (both) around (&&):
realFunction a = both conditionOne conditionTwo
where conditionOne = map (something a)
conditionTwo = somethingElse a
both f g x = (f x) && (g x)
As an aside, I'm also not sure why the both wrapper works; the pointfree style of realFunction behaves like the pointfree style version of contrived in that the partial application is only evaluated once (ie. if something sorted a it would only do so once). It appears that since both is not pointfree, Haskell should have the same issue that it had with the non-pointfree contrived.

If I understand correctly, you are looking for this:
contrived :: Ord a => [a] -> [a] -> [a]
contrived a = let a' = sort a in \b -> a' ++ b
-- or ... in (a' ++)
If you want the sort to be computed only once, it has to be done before the \b.
You are correct in that a compiler could optimize this. This is known as the "full laziness" optimization.
If I remember correctly, GHC does not always do it because it's not always an actual optimization, in the general case. Consider the contrived example
foo :: Int -> Int -> Int
foo x y = let a = [1..x] in length a + y
When passing both arguments, the above code works in constant space: the list elements are immediately garbage collected as they are produced.
When partially applying x, the closure for foo x only requires O(1) memory, since the list is not yet generated. Code like
let f = foo 1000 in f 10 + f 20 -- (*)
still run in constant space.
Instead, if we wrote
foo :: Int -> Int -> Int
foo x = let a = [1..x] in (length a +)
then (*) would no longer run in constant space. The first call f 10 would allocate a 1000-long list, and keep it in memory for the second call f 20.
Note that your partial application
... = (++) (sort a)
essentially means
... = let a' = sort a in \b -> a' ++ b
since argument passing involves a binding, as in let. So, the result of your sort a is kept around for all the future calls.

Related

Getting all function arguments in haskel as list

Is there a way in haskell to get all function arguments as a list.
Let's supose we have the following program, where we want to add the two smaller numbers and then subtract the largest. Suppose, we can't change the function definition of foo :: Int -> Int -> Int -> Int. Is there a way to get all function arguments as a list, other than constructing a new list and add all arguments as an element of said list? More importantly, is there a general way of doing this independent of the number of arguments?
Example:
module Foo where
import Data.List
foo :: Int -> Int -> Int -> Int
foo a b c = result!!0 + result!!1 - result!!2 where result = sort ([a, b, c])
is there a general way of doing this independent of the number of arguments?
Not really; at least it's not worth it. First off, this entire idea isn't very useful because lists are homogeneous: all elements must have the same type, so it only works for the rather unusual special case of functions which only take arguments of a single type.
Even then, the problem is that “number of arguments” isn't really a sensible concept in Haskell, because as Willem Van Onsem commented, all functions really only have one argument (further arguments are actually only given to the result of the first application, which has again function type).
That said, at least for a single argument- and final-result type, it is quite easy to pack any number of arguments into a list:
{-# LANGUAGE FlexibleInstances #-}
class UsingList f where
usingList :: ([Int] -> Int) -> f
instance UsingList Int where
usingList f = f []
instance UsingList r => UsingList (Int -> r) where
usingList f a = usingList (f . (a:))
foo :: Int -> Int -> Int -> Int
foo = usingList $ (\[α,β,γ] -> α + β - γ) . sort
It's also possible to make this work for any type of the arguments, using type families or a multi-param type class. What's not so simple though is to write it once and for all with variable type of the final result. The reason being, that would also have to handle a function as the type of final result. But then, that could also be intepreted as “we still need to add one more argument to the list”!
With all respect, I would disagree with #leftaroundabout's answer above. Something being
unusual is not a reason to shun it as unworthy.
It is correct that you would not be able to define a polymorphic variadic list constructor
without type annotations. However, we're not usually dealing with Haskell 98, where type
annotations were never required. With Dependent Haskell just around the corner, some
familiarity with non-trivial type annotations is becoming vital.
So, let's take a shot at this, disregarding worthiness considerations.
One way to define a function that does not seem to admit a single type is to make it a method of a
suitably constructed class. Many a trick involving type classes were devised by cunning
Haskellers, starting at least as early as 15 years ago. Even if we don't understand their
type wizardry in all its depth, we may still try our hand with a similar approach.
Let us first try to obtain a method for summing any number of Integers. That means repeatedly
applying a function like (+), with a uniform type such as a -> a -> a. Here's one way to do
it:
class Eval a where
eval :: Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval i = \y -> eval (i + y)
instance Eval Integer where
eval i = i
And this is the extract from repl:
λ eval 1 2 3 :: Integer
6
Notice that we can't do without explicit type annotation, because the very idea of our approach is
that an expression eval x1 ... xn may either be a function that waits for yet another argument,
or a final value.
One generalization now is to actually make a list of values. The science tells us that
we may derive any monoid from a list. Indeed, insofar as sum is a monoid, we may turn arguments to
a list, then sum it and obtain the same result as above.
Here's how we can go about turning arguments of our method to a list:
class Eval a where
eval2 :: [Integer] -> Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [Integer] where
eval2 is i = i:is
This is how it would work:
λ eval2 [] 1 2 3 4 5 :: [Integer]
[5,4,3,2,1]
Unfortunately, we have to make eval binary, rather than unary, because it now has to compose two
different things: a (possibly empty) list of values and the next value to put in. Notice how it's
similar to the usual foldr:
λ foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
The next generalization we'd like to have is allowing arbitrary types inside the list. It's a bit
tricky, as we have to make Eval a 2-parameter type class:
class Eval a i where
eval2 :: [i] -> i -> a
instance (Eval a i) => Eval (i -> a) i where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [i] i where
eval2 is i = i:is
It works as the previous with Integers, but it can also carry any other type, even a function:
(I'm sorry for the messy example. I had to show a function somehow.)
λ ($ 10) <$> (eval2 [] (+1) (subtract 2) (*3) (^4) :: [Integer -> Integer])
[10000,30,8,11]
So far so good: we can convert any number of arguments into a list. However, it will be hard to
compose this function with the one that would do useful work with the resulting list, because
composition only admits unary functions − with some trickery, binary ones, but in no way the
variadic. Seems like we'll have to define our own way to compose functions. That's how I see it:
class Ap a i r where
apply :: ([i] -> r) -> [i] -> i -> a
apply', ($...) :: ([i] -> r) -> i -> a
($...) = apply'
instance Ap a i r => Ap (i -> a) i r where
apply f xs x = \y -> apply f (x:xs) y
apply' f x = \y -> apply f [x] y
instance Ap r i r where
apply f xs x = f $ x:xs
apply' f x = f [x]
Now we can write our desired function as an application of a list-admitting function to any number
of arguments:
foo' :: (Num r, Ord r, Ap a r r) => r -> a
foo' = (g $...)
where f = (\result -> (result !! 0) + (result !! 1) - (result !! 2))
g = f . sort
You'll still have to type annotate it at every call site, like this:
λ foo' 4 5 10 :: Integer
-1
− But so far, that's the best I can do.
The more I study Haskell, the more I am certain that nothing is impossible.

Insufficient definition of replicate

I have a question that I think is rather tricky.
The standard prelude contains the function
replicate :: Int -> a -> [a]
The following might seem like a reasonable definition for it
replicate n x = take n [x,x,..]
But it is actually not sufficient. Why not?
I know that the replicate function is defined as:
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
And repeat is defined as:
repeat :: a -> [a]
repeat x = xs where xs = x:xs
Is the definition insufficient (from the question) because it uses an infinite list?
First of all there is a small syntax error in the question, it should be:
replicate n x = take n [x,x..]
-- ^ no comma
but let's not be picky.
Now when you use range syntax (i.e. x..), then x should be of a type that is an instance of Enum. Indeed:
Prelude> :t \n x -> take n [x,x..]
\n x -> take n [x,x..] :: Enum a => Int -> a -> [a]
You can argue that x,x.. will only generate x, but the Haskell compiler does not know that at compile time.
So the type in replicate (in the question) is too specific: it implies a type constraint - Enum a - that is actually not necessary.
Your own definition on the other hand is perfectly fine. Haskell has no problem with infinite lists since it uses lazy evaluation. Furthermore because you define xs with xs as tail, you actually constructed a circular linked list which also is better in terms of memory usage.

How to implement delete with foldr in Haskell

I've been studying folds for the past few days. I can implement simple functions with them, like length, concat and filter. What I'm stuck at is trying to implement with foldr functions like delete, take and find. I have implemented these with explicit recursion but it doesn't seem obvious to me how to convert these types of functions to right folds.
I have studied the tutorials by Graham Hutton and Bernie Pope. Imitating Hutton's dropWhile, I was able to implement delete with foldr but it fails on infinite lists.
From reading Implement insert in haskell with foldr, How can this function be written using foldr? and Implementing take using foldr, it would seem that I need to use foldr to generate a function which then does something. But I don't really understand these solutions and don't have an idea how to implement for example delete this way.
Could you explain to me a general strategy for implementing with foldr lazy versions of functions like the ones I mentioned. Maybe you could also implement delete as an example since this probably is one of the easiest.
I'm looking for a detailed explanation that a beginner can understand. I'm not interested in just solutions, I want to develop an understanding so I can come up with solutions to similar problems myself.
Thanks.
Edit: At the moment of writing there is one useful answer but it's not quite what I was looking for. I'm more interested in an approach that uses foldr to generate a function, which then does something. The links in my question have examples of this. I don't quite understand those solutions so I would like to have more information on this approach.
delete is a modal search. It has two different modes of operation - whether it's already found the result or not. You can use foldr to construct a function that passes the state down the line as each element is checked. So in the case of delete, the state can be a simple Bool. It's not exactly the best type, but it will do.
Once you have identified the state type, you can start working on the foldr construction. I'm going to walk through figuring it out the way I did. I'll be enabling ScopedTypeVariables just so I can annotate the type of subexpressions better. One you know the state type, you know you want foldr to generate a function taking a value of that type, and returning a value of the desired final type. That's enough to start sketching things.
{-# LANGUAGE ScopedTypeVariables #-}
delete :: forall a. Eq a => a -> [a] -> [a]
delete a xs = foldr f undefined xs undefined
where
f :: a -> (Bool -> [a]) -> (Bool -> [a])
f x g = undefined
It's a start. The exact meaning of g is a little bit tricky here. It's actually the function for processing the rest of the list. It's accurate to look at it as a continuation, in fact. It absolutely represents performing the rest of the folding, with your whatever state you choose to pass along. Given that, it's time to figure out what to put in some of those undefined places.
{-# LANGUAGE ScopedTypeVariables #-}
delete :: forall a. Eq a => a -> [a] -> [a]
delete a xs = foldr f undefined xs undefined
where
f :: a -> (Bool -> [a]) -> (Bool -> [a])
f x g found | x == a && not found = g True
| otherwise = x : g found
That seems relatively straightforward. If the current element is the one being searched for, and it hasn't yet been found, don't output it, and continue with the state set to True, indicating it's been found. otherwise, output the current value and continue with the current state. This just leaves the rest of the arguments to foldr. The last one is the initial state. The other one is the state function for an empty list. Ok, those aren't too bad either.
{-# LANGUAGE ScopedTypeVariables #-}
delete :: forall a. Eq a => a -> [a] -> [a]
delete a xs = foldr f (const []) xs False
where
f :: a -> (Bool -> [a]) -> (Bool -> [a])
f x g found | x == a && not found = g True
| otherwise = x : g found
No matter what the state is, produce an empty list when an empty list is encountered. And the initial state is that the element being searched for has not yet been found.
This technique is also applicable in other cases. For instance, foldl can be written as a foldr this way. If you look at foldl as a function that repeatedly transforms an initial accumulator, you can guess that's the function being produced - how to transform the initial value.
{-# LANGUAGE ScopedTypeVariables #-}
foldl :: forall a b. (a -> b -> a) -> a -> [b] -> a
foldl f z xs = foldr g id xs z
where
g :: b -> (a -> a) -> (a -> a)
g x cont acc = undefined
The base cases aren't too tricky to find when the problem is defined as manipulating the initial accumulator, named z there. The empty list is the identity transformation, id, and the value passed to the created function is z.
The implementation of g is trickier. It can't just be done blindly on types, because there are two different implementations that use all the expected values and type-check. This is a case where types aren't enough, and you need to consider the meanings of the functions available.
Let's start with an inventory of the values that seem like they should be used, and their types. The things that seem like they must need to be used in the body of g are f :: a -> b -> a, x :: b, cont :: (a -> a), and acc :: a. f will obviously take x as its second argument, but there's a question of the appropriate place to use cont. To figure out where it goes, remember that it represents the transformation function returned by processing the rest of the list, and that foldl processes the current element and then passes the result of that processing to the rest of the list.
{-# LANGUAGE ScopedTypeVariables #-}
foldl :: forall a b. (a -> b -> a) -> a -> [b] -> a
foldl f z xs = foldr g id xs z
where
g :: b -> (a -> a) -> (a -> a)
g x cont acc = cont $ f acc x
This also suggests that foldl' can be written this way with only one tiny change:
{-# LANGUAGE ScopedTypeVariables #-}
foldl' :: forall a b. (a -> b -> a) -> a -> [b] -> a
foldl' f z xs = foldr g id xs z
where
g :: b -> (a -> a) -> (a -> a)
g x cont acc = cont $! f acc x
The difference is that ($!) is used to suggest evaluation of f acc x before it's passed to cont. (I say "suggest" because there are some edge cases where ($!) doesn't force evaluation even as far as WHNF.)
delete doesn't operate on the entire list evenly. The structure of the computation isn't just considering the whole list one element at a time. It differs after it hits the element it's looking for. This tells you it can't be implemented as just a foldr. There will have to be some sort of post-processing involved.
When that happens, the general pattern is that you build a pair of values and just take one of them at completion of the foldr. That's probably what you did when you imitated Hutton's dropWhile, though I'm not sure since you didn't include code. Something like this?
delete :: Eq a => a -> [a] -> [a]
delete a = snd . foldr (\x (xs1, xs2) -> if x == a then (x:xs1, xs1) else (x:xs1, x:xs2)) ([], [])
The main idea is that xs1 is always going to be the full tail of the list, and xs2 is the result of the delete over the tail of the list. Since you only want to remove the first element that matches, you don't want to use the result of delete over the tail when you do match the value you're searching for, you just want to return the rest of the list unchanged - which fortunately is what's always going to be in xs1.
And yeah, that doesn't work on infinite lists - but only for one very specific reason. The lambda is too strict. foldr only works on infinite lists when the function it is provided doesn't always force evaluation of its second argument, and that lambda does always force evaluation of its second argument in the pattern match on the pair. Switching to an irrefutable pattern match fixes that, by allowing the lambda to produce a constructor before ever examining its second argument.
delete :: Eq a => a -> [a] -> [a]
delete a = snd . foldr (\x ~(xs1, xs2) -> if x == a then (x:xs1, xs1) else (x:xs1, x:xs2)) ([], [])
That's not the only way to get that result. Using a let-binding or fst and snd as accessors on the tuple would also do the job. But it is the change with the smallest diff.
The most important takeaway here is to be very careful with handling the second argument to the reducing function you pass to foldr. You want to defer examining the second argument whenever possible, so that the foldr can stream lazily in as many cases as possible.
If you look at that lambda, you see that the branch taken is chosen before doing anything with the second argument to the reducing function. Furthermore, you'll see that most of the time, the reducing function produces a list constructor in both halves of the result tuple before it ever needs to evaluate the second argument. Since those list constructors are what make it out of delete, they are what matter for streaming - so long as you don't let the pair get in the way. And making the pattern-match on the pair irrefutable is what keeps it out of the way.
As a bonus example of the streaming properties of foldr, consider my favorite example:
dropWhileEnd :: (a -> Bool) -> [a] -> [a]
dropWhileEnd p = foldr (\x xs -> if p x && null xs then [] else x:xs) []
It streams - as much as it can. If you figure out exactly when and why it does and doesn't stream, you'll understand pretty much every detail of the streaming structure of foldr.
here is a simple delete, implemented with foldr:
delete :: (Eq a) => a -> [a] -> [a]
delete a xs = foldr (\x xs -> if x == a then (xs) else (x:xs)) [] xs

What are the alternatives to prelude's iterate if the "output" values are not the same as those being iterated on?

I have come across a pattern where, I start with a seed value x and at each step generate a new seed value and a value to be output. My desired final result is a list of the output values. This can be represented by the following function:
my_iter :: (a -> (a, b)) -> a -> [b]
my_iter f x = y : my_iter f x'
where (x',y) = f x
And a contrived example of using this would be generating the Fibonacci numbers:
fibs:: [Integer]
fibs = my_iter (\(a,b) -> let c = a+b in ((b, c), c)) (0,1)
-- [1, 2, 3, 5, 8...
My problem is that I have this feeling that there is very likely a more idiomatic way to do this kind of stuff. What are the idiomatic alternatives to my function?
The only ones I can think of right now involve iterate from the Prelude, but they have some shortcomings.
One way is to iterate first and map after
my_iter f x = map f2 $ iterate f1 x
where f1 = fst . f
f2 = snd . f
However, this can look ugly if there is no natural way to split f into the separate f1 and f2 functions. (In the contrived Fibonacci case this is easy to do, but there are some situations where the generated value is not an "independent" function of the seed so its not so simple to split things)
The other way is to tuple the "output" values together with the seeds, and use a separate step to separate them (kind of like the "Schwartzian transform" for sorting things):
my_iter f x = map snd . tail $ iterate (f.fst) (x, undefined)
But this seems wierd, since we have to remember to ignore the generated values in order to get to the seed (the (f.fst) bit) and add we need an "undefined" value for the first, dummy generated value.
As already noted, the function you want is unfoldr. As the name suggests, it's the opposite of foldr, but it might be instructive to see exactly why that's true. Here's the type of foldr:
(a -> b -> b) -> b -> [a] -> b
The first two arguments are ways of obtaining something of type b, and correspond to the two data constructors for lists:
[] :: [a]
(:) :: a -> [a] -> [a]
...where each occurrence of [a] is replaced by b. Noting that the [] case produces a b with no input, we can consolidate the two as a function taking Maybe (a, b) as input.
(Maybe (a, b) -> b) -> ([a] -> b)
The extra parentheses show that this is essentially a function that turns one kind of transformation into another.
Now, simply reverse the direction of both transformations:
(b -> Maybe (a, b)) -> (b -> [a])
The result is exactly the type of unfoldr.
The underlying idea this demonstrates can be applied similarly to other recursive data types, as well.
The standard function you're looking for is called unfoldr.
Hoogle is a very useful tool in this case, since it doesn't only support searching functions by name, but also by type.
In your case, you came up with the desired type (a -> (a, b)) -> a -> [b]. Entering it yields no results - hmm.
Well, maybe there's a standard function with a slightly different syntax. For example, the standard function might have its arguments flipped; let's look for something with (a -> (a, b)) in its type signature somewhere. This time we're lucky as there are plenty of results, but all of them are in exotic packages and none of them seems very helpful.
Maybe the second part of your function is a better match, you want to generate a list out of some initial element after all - so type in a -> [b] and hit search. First result: unfoldr - bingo!
Another possibility is iterateM in State monad:
iterateM :: Monad m => m a -> m [a]
iterateM = sequence . repeat
It is not in standard library but it's easy to build.
So your my_iter is
evalState . sequence . repeat :: State s a -> s -> [a]

What type signature do I need to allow a list of functions to be converted to haskell code? [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Why is such a function definition not allowed in haskell?
I made a haskell function called funlist. What it does is it takes a starting value, and a list of functions, and applies all of the functions in the list to the starting value.
funlist thing [function] = function thing
funlist thing (function:functions) = funlist (function thing) functions
funlist _ _ = error "need a list of functions"
The problem with this function is that it has a type of funlist :: t -> [t -> t] -> t. That type means that while ghc will allow a list of functions that don't convert the starting value to a completely different type (e.g [sin,cos,tan] will be allowed), a function that converts the starting value to a different type (e.g show) will generate an error because that function doesn't match the type signature.
This isn't how the function should work. It should be able to take a list of functions that change the starting values type (e.g. [sin,show]). This function basically converts funlist 5 [sin,cos,tan,isInfinite,show] to show $ isInfinite $ tan $ cos $ sin $ 5, and while the latter works, the former doesn't.
Is there any way that I can get this function to work properly?
EDIT: I know about . and >>>, I'm just wondering if there's a way to make this work.
You can write what you want with a GADT:
{-# LANGUAGE GADTs #-}
module Funlist where
data F x y where
Id :: F a a
Ap :: (a->b) -> F b c -> F a c
-- A very round about way to write f x = x + x
f1 :: Int -> Char
f1 = toEnum
f2 :: Char -> String
f2 x = x:x:[]
f3 :: String -> [Int]
f3 = map fromEnum
f4 :: [Int] -> Integer
f4 = foldr (+) 0 . map toInteger
f_list :: F Int Integer
f_list = Ap f1 (Ap f2 (Ap f3 (Ap f4 Id)))
ap :: F a b -> a -> b
ap Id x = x
ap (Ap f gs) x = ap gs (f x)
Now ap f_list 65 is 130
This does not work with normal functions/normal lists in Haskell, since it requires a dynamically typed language, and not a statically typed language like Haskell. The funlist function can't have a different type depending on what the contents of the function list is at runtime; its type must be known at compile-time. Further, the compiler must be able to check that the function chain is valid, so that you can't use the list [tan, show, sin] for example.
There are two solutions to this problem.
You can either use heterogenous lists. These lists can store lists where each element is a different type. You can then check the constraint that each element must be a function and that one elements return type must be the next function's parameter type. This can become very difficult very quickly.
You can also use Data.Dynamic to let your functions take and return dynamic types. You have to perform some dynamic type casts in that case.
If all you're going to do with this list of functions is apply them to a single value in a pipeline, then instead of writing and calling your funlist function, do this:
show . isInfinite . tan . cos . sin $ 5
or, if you don't want the list reversed in your code, do this:
import Control.Arrow (>>>)
(sin >>> cos >>> tan >>> isInfinite >>> show) 5
Functions in Haskell, in general, have types that look like a -> b, for some choice of a and b. In your case, you have a list [f0, ..., fn] of functions, and you want to compute this:
funlist [f0, ..., fn] x == f0 (funlist [f1, ..., fn] x)
== f0 (f1 (funlist [f2, ..., fn] x))
...
== f0 (f1 (... (fn x)))
The t -> t problem you're having is a consequence of these two things:
This computation requires the argument type of f0 to be the return type of f1, the argument type of f1 to be the return type of f2, and so on: f0 :: y -> z, f1 :: x -> y, ..., fn :: a -> b.
But you're putting all those functions in a list, and all the elements of a list in Haskell must have the same type.
These two, taken together, imply that the list of functions used in funlist must have type [t -> t], because that's the only way both conditions can be met at the same time.
Other than that, dave4420's answer is the best simple answer, IMO: use function composition. If you can't use it because the computation to be done is only known at runtime, then you want to have some data structure more complex than the list to represent the possible computations. Chris Kuklewicz presents a very generic solution for that, but I'd normally do something custom-made for the specific problem area at hand.
Also good to know that your funlist can be written like this:
funlist :: a -> [a -> a] -> a
funlist x fs = foldr (.) id fs x
Short answer: No, there's no way to do what you want with lists (in a sensible way, at least).
The reason is that lists in Haskell are always homogenous, i.e. each element of a list must have the same type. The functions you want to put to the list have types:
sin :: Floating a => a -> a
isInfinite :: Floating b => b -> Bool
show :: Show c => c -> String
So you can't just put the functions in the same list. Your two main options are to:
Use a structure other than list (e.g. HList or a custom GADT)
Use dynamic typing
Since the other answers already gave GADT examples, here's how you could implement your function using dynamic types:
import Data.Dynamic
funlist :: Dynamic -> [Dynamic] -> Dynamic
funlist thing (function:functions) = funlist (dynApp function thing) functions
funlist thing [] = thing
However, using dynamic types causes some boilerplate, because you have to convert between static and dynamic types. So, to call the function, you'd need to write
funlist (toDyn 5) [toDyn sin, toDyn cos, toDyn tan, toDyn isInfinite, toDyn show]
And unfortunately, even that is not enough. The next problem is that dynamic values must have homomorphic types, so for example instead of the function show :: Show a => a -> String you need to manually specify e.g. the concrete type show :: Bool -> String, so the above becomes:
funlist (toDyn (5::Double)) [toDyn sin, toDyn cos, toDyn tan, toDyn isInfinite,
toDyn (show :: Bool -> String)]
What's more, the result of the function is another dynamic value, so we need to convert it back to a static value if we want to use it in regular functions.
fromDyn (funlist (toDyn (5::Double)) [toDyn sin, toDyn cos, toDyn tan,
toDyn isInfinite, toDyn (show :: Bool -> String)]) ""
What you want works in Haskell, but it's not a list. It is a function composition and can actually be wrapped in a GADT:
import Control.Arrow
import Control.Category
import Prelude hiding ((.), id)
data Chain :: * -> * -> * where
Chain :: (a -> c) -> Chain c b -> Chain a b
Id :: Chain a a
apply :: Chain a b -> a -> b
apply (Chain f k) x = apply k (f x)
apply Id x = x
Now you can inspect the structure of the function chain to some extent. There isn't much you can find out, but you can add further meta information to the Chain constructor, if you need more.
The type also forms an interesting category that preserves the additional information:
instance Category Chain where
id = Id
Id . c = c
c . Id = c
c2 . Chain f1 k1 = Chain f1 (c2 . k1)
instance Arrow Chain where
arr f = Chain f Id
first (Chain f c) = Chain (first f) (first c)
first Id = Id
There where some answers using GADTs, which is a good way to do such things. What I want to add here is that the structure used in these answers already exists in a more general fashion: it's called a thrist ("type threaded list"):
Prelude Data.Thrist> let fs = Cons (show :: Char -> String) (Cons length Nil)
Prelude Data.Thrist> let f = foldl1Thrist (flip (.)) fs
Prelude Data.Thrist> :t fs
fs :: Thrist (->) Char Int
Prelude Data.Thrist> :t f
f :: Char -> Int
Prelude Data.Thrist> f 'a'
3
Of course, you could also use foldl1Thrist (>>>) fs instead. Note that thrists form a category, an arrow and a monoid (with appendThrist).

Resources