groupByKey and distinct VS combineByKey - apache-spark

I'm learning Spark and playing around with some "exercises".
At some point, I have a JavaPairRDD<Integer, Integer> which contains duplicates. My goal is to group by keys and remove the duplicates.
I see (at least) two possibilities:
Use distinct() and groupByKey()
Use combineByKey() and make sure that we only add elements we didn't have before (for example the result could be a JavaPairRDD<Integer, Set<Integer>>
I used the second approach (to avoid doing a shuffle with the distinct()) but then saw the original "solution" is the first one.
Which solution is the most efficient in your opinion?

Related

Why does collect_list in Spark not use partial aggregation

I recently played around with UDAFs and looked into the sourcecode of the built-in aggregation function collect_list, I was suprised to see that collect_list does not have a merge method implemented, although I think this is really straight-farward (just concatenate two Arrays). Code taken from org.apache.spark.sql.catalyst.expressions.aggregate.collect.Collect
override def merge(buffer: InternalRow, input: InternalRow): Unit = {
sys.error("Collect cannot be used in partial aggregations.")
}
It is no longer the case, as SPARK-1893 but I'd assume that the initial design had mostly collect_list in mind.
Because collect_list is logically equivalent to groupByKey the motivation would be exactly the same to avoid long GC pauses. In particular map side combine in groupByKey has been disabled with Spark SPARK-772:
Map side combine in group by key case does not reduce the amount of data shuffled. Instead, it forces a lot more objects to go into old gen, and leads to worse GC.
So to address you comment
I think this is really straight-farward (just concatenate two Arrays).
It might be simple but it doesn't add much value (unless there is another reducing operation on top of it) and sequence concatenation is expensive.

Difference between reduce and reduceByKey in Apache Spark

What is the difference between reduce and reduceByKey in Apache Spark in terms of their functionalities?
Why reduceByKey is a transformation and reduce is an action?
This is close to a duplicate of my answer explaining reduceByKey, but I will elaborate to the specific part that makes the two different. However refer to my answer for a bit more specifics on the internals of reduceByKey.
Basically, reduce must pull the entire dataset down into a single location because it is reducing to one final value. reduceByKey on the other hand is one value for each key. And since this action can be run on each machine locally first then it can remain an RDD and have further transformations done on its dataset.
Note, however that there is a reduceByKeyLocally you can use to automatically pull down the Map to a single location also.
Please go through this official documentation link .
reduce is an action which Aggregate the elements of the dataset using a function func (which takes two arguments and returns one),also we can use reduce for single RDDs (for more info Please click HERE).
reduceByKey When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V. (for more info Please click HERE)
this is the qt assistant :
reduce(f): Reduces the elements of this RDD using the specified
commutative and associative binary operator. Currently reduces
partitions locally.
reduceByKey(func, numPartitions=None, partitionFunc=) :
Merge the values for each key using an associative and commutative reduce
function.

Mind blown: RDD.zip() method

I just discovered the RDD.zip() method and I cannot imagine what its contract could possibly be.
I understand what it does, of course. However, it has always been my understanding that
the order of elements in an RDD is a meaningless concept
the number of partitions and their sizes is an implementation detail only available to the user for performance tuning
In other words, an RDD is a (multi)set, not a sequence (and, of course, in, e.g., Python one gets AttributeError: 'set' object has no attribute 'zip')
What is wrong with my understanding above?
What was the rationale behind this method?
Is it legal outside the trivial context like a.map(f).zip(a)?
EDIT 1:
Another crazy method is zipWithIndex(), as well as well as the various zipPartitions() variants.
Note that first() and take() are not crazy because they are just (non-random) samples of the RDD.
collect() is also okay - it just converts a set to a sequence which is perfectly legit.
EDIT 2: The reply says:
when you compute one RDD from another the order of elements in the new RDD may not correspond to that in the old one.
This appears to imply that even the trivial a.map(f).zip(a) is not guaranteed to be equivalent to a.map(x => (f(x),x)). What is the situation when zip() results are reproducible?
It is not true that RDDs are always unordered. An RDD has a guaranteed order if it is the result of a sortBy operation, for example. An RDD is not a set; it can contain duplicates. Partitioning is not opaque to the caller, and can be controlled and queried. Many operations do preserve both partitioning and order, like map. That said I find it a little easy to accidentally violate the assumptions that zip depends on, since they're a little subtle, but it certainly has a purpose.
The mental model I use (and recommend) is that the elements of an RDD are ordered, but when you compute one RDD from another the order of elements in the new RDD may not correspond to that in the old one.
For those who want to be aware of partitions, I'd say that:
The partitions of an RDD have an order.
The elements within a partition have an order.
If you think of "concatenating" the partitions (say laying them "end to end" in order) using the order of elements within them, the overall ordering you end up with corresponds to the order of elements if you ignore partitions.
But again, if you compute one RDD from another, all bets about the order relationships of the two RDDs are off.
Several members of the RDD class (I'm referring to the Scala API) strongly suggest an order concept (as does their documentation):
collect()
first()
partitions
take()
zipWithIndex()
as does Partition.index as well as SparkContext.parallelize() and SparkContext.makeRDD() (which both take a Seq[T]).
In my experience these ways of "observing" order give results that are consistent with each other, and the ones that translate back and forth between RDDs and ordered Scala collections behave as you would expect -- they preserve the overall order of elements. This is why I say that, in practice, RDDs have a meaningful order concept.
Furthermore, while there are obviously many situations where computing an RDD from another must change the order, in my experience order tends to be preserved where it is possible/reasonable to do so. Operations that don't re-partition and don't fundamentally change the set of elements especially tend to preserve order.
But this brings me to your question about "contract", and indeed the documentation has a problem in this regard. I have not seen a single place where an operation's effect on element order is made clear. (The OrderedRDDFunctions class doesn't count, because it refers to an ordering based on the data, which may differ from the raw order of elements within the RDD. Likewise the RangePartitioner class.) I can see how this might lead you to conclude that there is no concept of element order, but the examples I've given above make that model unsatisfying to me.

How can I access values outside of Spark GraphX .map loop?

Brand new to Apache Spark and I'm a little confused how to make updates to a value that sits outside of a .mapTriplets iteration in GraphX. See below:
def mapTripletsMethod(edgeWeights: Graph[Int, Double], stationaryDistribution: Graph[Double, Double]) = {
val tempMatrix: SparseDoubleMatrix2D = graphToSparseMatrix(edgeWeights)
stationaryDistribution.mapTriplets{ e =>
val row = e.srcId.toInt
val column = e.dstId.toInt
var cellValue = -1 * tempMatrix.get(row, column) + e.dstAttr
tempMatrix.set(row, column, cellValue) // this doesn't do anything to tempMatrix
e
}
}
I'm guessing this is due to the design of an RDD and there's no simple way to update the tempMatrix value. When I run the above code the tempMatrix.set method does nothing. It was rather difficult to try to follow the problem in the debugger.
Does anyone have an easy solution? Thank you!
Edit
I've made an update above to show that stationaryDistribution is a graph RDD.
You could make tempMatrix be of type RDD[((Int,Int), Double)] -- that is, each entry is a pair where the first element is in turn a (row,col) pair. Then use the PairRDDFunctions class to combine that with ((row,col),weight) triplets generated by your mapTriplets call. (So, don't think of it as updating the tempMatrix, but rather combining two RDDs to get a third.)
If you need to support stationary distribution graphs where there is more than one edge per vertex pair it gets a little tricky: you'll probably need to combine those edges in a reduction pass to create an RDD with one entry per pair, with a list of weights, and then apply all the weights to a given (row,col) pair at the same time. Otherwise it's very simple.
Notice that `PairRDDFunctions' on the one hand give you ways to combine multiple RDDs into one, or on the other hand to pull the values out into a Map on the master. Assuming that the distribution matrix is large enough to merit an RDD in the first place, I think you should do the whole thing on RDDs.
Another approach is to make the tempMatrix be a GraphRDD too, which may or may not make sense depending on what you're going to do with it next.

How to assign unique contiguous numbers to elements in a Spark RDD

I have a dataset of (user, product, review), and want to feed it into mllib's ALS algorithm.
The algorithm needs users and products to be numbers, while mine are String usernames and String SKUs.
Right now, I get the distinct users and SKUs, then assign numeric IDs to them outside of Spark.
I was wondering whether there was a better way of doing this. The one approach I've thought of is to write a custom RDD that essentially enumerates 1 through n, then call zip on the two RDDs.
Starting with Spark 1.0 there are two methods you can use to solve this easily:
RDD.zipWithIndex is just like Seq.zipWithIndex, it adds contiguous (Long) numbers. This needs to count the elements in each partition first, so your input will be evaluated twice. Cache your input RDD if you want to use this.
RDD.zipWithUniqueId also gives you unique Long IDs, but they are not guaranteed to be contiguous. (They will only be contiguous if each partition has the same number of elements.) The upside is that this does not need to know anything about the input, so it will not cause double-evaluation.
For a similar example use case, I just hashed the string values. See http://blog.cloudera.com/blog/2014/03/why-apache-spark-is-a-crossover-hit-for-data-scientists/
def nnHash(tag: String) = tag.hashCode & 0x7FFFFF
var tagHashes = postIDTags.map(_._2).distinct.map(tag =>(nnHash(tag),tag))
It sounds like you're already doing something like this, although hashing can be easier to manage.
Matei suggested here an approach to emulating zipWithIndex on an RDD, which amounts to assigning IDs within each partiition that are going to be globally unique: https://groups.google.com/forum/#!topic/spark-users/WxXvcn2gl1E
Another easy option, if using DataFrames and just concerned about the uniqueness is to use function MonotonicallyIncreasingID
import org.apache.spark.sql.functions.monotonicallyIncreasingId
val newDf = df.withColumn("uniqueIdColumn", monotonicallyIncreasingId)
Edit: MonotonicallyIncreasingID was deprecated and removed since Spark 2.0; it is now known as monotonically_increasing_id .
monotonically_increasing_id() appears to be the answer, but unfortunately won't work for ALS since it produces 64-bit numbers and ALS expects 32-bit ones (see my comment below radek1st's answer for deets).
The solution I found is to use zipWithIndex(), as mentioned in Darabos' answer. Here's how to implement it:
If you already have a single-column DataFrame with your distinct users called userids, you can create a lookup table (LUT) as follows:
# PySpark code
user_als_id_LUT = sqlContext.createDataFrame(userids.rdd.map(lambda x: x[0]).zipWithIndex(), StructType([StructField("userid", StringType(), True),StructField("user_als_id", IntegerType(), True)]))
Now you can:
Use this LUT to get ALS-friendly integer IDs to provide to ALS
Use this LUT to do a reverse-lookup when you need to go back from ALS ID to the original ID
Do the same for items, obviously.
People have already recommended monotonically_increasing_id(), and mentioned the problem that it creates Longs, not Ints.
However, in my experience (caveat - Spark 1.6) - if you use it on a single executor (repartition to 1 before), there is no executor prefix used, and the number can be safely cast to Int. Obviously, you need to have less than Integer.MAX_VALUE rows.

Resources