Pruning in Keras - python-3.x

I'm trying to design a neural network using Keras with priority on prediction performance, and I cannot get sufficiently high accuracy by further reducing the number of layers and nodes per layer. I have noticed that very large portion of my weights are effectively zero (>95%). Is there a way to prune dense layers in hope of reducing prediction time?

Not a dedicated way :(
There's currently no easy (dedicated) way of doing this with Keras.
A discussion is ongoing at https://groups.google.com/forum/#!topic/keras-users/oEecCWayJrM.
You may also be interested in this paper: https://arxiv.org/pdf/1608.04493v1.pdf.

Take a look at Keras Surgeon:
https://github.com/BenWhetton/keras-surgeon
I have not tried it myself, but the documentation claims that it has functions to remove or insert nodes.
Also, after looking at some papers on pruning, it seems that many researchers create a new model with less channels (or less layers), and then copy the weights from the original model to the new model.

See this dedicated tooling for tf.keras. https://www.tensorflow.org/model_optimization/guide/pruning
As the overview suggests, support for latency improvements is a work in progress
Edit: Keras -> tf.keras based on LucG's suggestion.

If you set an individual weight to zero won't that prevent it from being updated during back propagation? Shouldn't thatv weight remain zero from one epoch to the next? That's why you set the initial weights to nonzero values before training. If you want to "remove" an entire node, just set all of the weights on that node's output to zero and that will prevent that nodes from having any affect on the output throughout training.

Related

How to put more weight on one class during training in Pytorch [duplicate]

I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.

Model underfitting

I have trained a model and it took me quite a while to find the correct hyperparameters.
The model has now been trained for 15h and it seems to to its job quite well.
When I observed the training and validation loss though, the training loss is somewhat higher than the validation loss. (red curve: training, green: validation)
I use dropout to regularize my model and as far as I have understood, droput is is only applied during training which might be the reason.
Now Iam wondering if I have trained a valid model?
It doesn't seem like the model is heavily underfitted?
Thanks in advance for any advice,
cheers,
M
First, check whether you have good data set, i.e., if it is a classification, then get equal number of images for all classes and get it from same source not from different sources. And regularization, dropout are used for overfitting/High variance so don't worry about these.
Then, I think your model is doing good when you trained your model the initial error between them are different but as you increased the epochs then they both got into some steady path. So it is good. And may be reason for this is as I mentioned above or you should try shuffle them then using train_test_split for getting better distribution of training and validation sets.
A plot of learning curves shows a good fit if:
The plot of training loss decreases to a point of stability.
The plot of validation loss decreases to a point of stability and has a small gap with the training loss.
In your case these conditions are satisfied.
Still if you want to deal with High Bias/underfitting then here are few methods:
Train bigger models
Train longer. Use better optimization techniques
Try different Neural Network Architecture and also hyper parameters
And also you can use cross-validation or GridSearchCV for finding better optimizer or hyper parameters but it may take really long because you have to train it on different parameters each time considering your time which is 15 hours then it might be very long but you will find better parameters and then train on it.
Above all I think your model is doing okay.
If your model underfits, its performance will be lower, similar as in the case of overfitting, because actually it can not learn effectively to get the optimal result, i.e the proper function to fit the given distribution. So you have to use less regularization technique e.g. less dropout to get the optimal result.
Furthermore the sampling can also be crucial, because there can be training-validation subsets where your model performs well on validation set and less effective on training set and vice-versa. This is one of the reason why we use crossvalidation and different sampling methods e.g. stratified k-fold.

Multilabel classification with class imbalance in Pytorch

I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.

Best Way to Overcome Early Convergence for Machine Learning Model

I have a machine learning model built that tries to predict weather data, and in this case I am doing a prediction on whether or not it will rain tomorrow (a binary prediction of Yes/No).
In the dataset there is about 50 input variables, and I have 65,000 entries in the dataset.
I am currently running a RNN with a single hidden layer, with 35 nodes in the hidden layer. I am using PyTorch's NLLLoss as my loss function, and Adaboost for the optimization function. I've tried many different learning rates, and 0.01 seems to be working fairly well.
After running for 150 epochs, I notice that I start to converge around .80 accuracy for my test data. However, I would wish for this to be even higher. However, it seems like the model is stuck oscillating around some sort of saddle or local minimum. (A graph of this is below)
What are the most effective ways to get out of this "valley" that the model seems to be stuck in?
Not sure why exactly you are using only one hidden layer and what is the shape of your history data but here are the things you can try:
Try more than one hidden layer
Experiment with LSTM and GRU layer and combination of these layers together with RNN.
Shape of your data i.e. the history you look at to predict the weather.
Make sure your features are scaled properly since you have about 50 input variables.
Your question is little ambiguous as you mentioned RNN with a single hidden layer. Also without knowing the entire neural network architecture, it is tough to say how can you bring in improvements. So, I would like to add a few points.
You mentioned that you are using "Adaboost" as the optimization function but PyTorch doesn't have any such optimizer. Did you try using SGD or Adam optimizers which are very useful?
Do you have any regularization term in the loss function? Are you familiar with dropout? Did you check the training performance? Does your model overfit?
Do you have a baseline model/algorithm so that you can compare whether 80% accuracy is good or not?
150 epochs just for a binary classification task looks too much. Why don't you start from an off-the-shelf classifier model? You can find several examples of regression, classification in this tutorial.

Is there a relation between the number of LSTM units and the length of the sequence to be trained?

I have programmed keras neural network to train on sequences. Does choosing the LSTM units in keras depend on length of the sequence?
There isn't a set way of determining how many units you should have based on your input.
More units are a way of making the model more complex. Generally speaking, if the look back period for your neural network is longer, then you have more features to train on, which means a more complex model would be better suited for learning your data.
Personally, I like to use the number of timesteps in each sample as my number of units, and I decrease this number as I move deeper into the network.
I have encountered the problem when I designed sports betting prediction engine with LSTM RNN.
There's a rule of thumb that helps for supervised learning problems. Please check this link. Here
But in my opinion, there is still no correct method or formulus to calculate the number of neurons per layer and the number of hidden layers according to the training dataset yet.

Resources