Cassandra for storing click logs - cassandra

I work in ad tech and our current infrastructure uses MySQL for storing clicks and conversion logs. So far, MySQL has been useful to us for running ad hoc queries against click data.
We are considering switching to Cassandra as we receive huge traffic spikes during peak times. Not only that, we are growing at a very fast rate and we get about 500-1000 clicks per second every now and then(for an extended duration,sometimes for 20-30 minutes).
I have been the options available, and so far, my research has let me to believe that nothing beats Cassandra in terms of write performance.
I'm currently in the process of creating a data model to store clicks.
The major component of any clicks are as follows:
Campaign id
Pub id
Timestamp
Creative id
Event code (whether it is a valid click or an invalid click.This is an int value. For example, event_code=0 is a valid click)
Now, I need to support the following queries:
1. SELECT * FROM clicks WHERE campaign_id=?
2. SELECT * FROM clicks WHERE campaign_id=? AND date_time>=? AND date_time <=?
3. SELECT * FROM clicks WHERE campaign_id=? AND pub_id=? AND AND date_time>=? AND date_time <=? AND event_code=?
etc
This is simple enough to do with MySQL, after which I just get all the data from these queries in a CSV file.
However, if I were to model my tables based on the first query, this would mean that I would require to create a table in Cassandra like the following:
CREATE TABLE clicks_by_campaign(
camp_id int,
pub_id int,
date_time timestamp,
creative_id int,
event_code int,
//other fields like ip, user agent ,device etc,
PRIMARY KEY(camp_id,pub_id,date_time,event_code,creative_id))
But there are campaigns that can have millions of rows. For example, we have campaigns with a particular id, say id=3, that have more than 7 million clicks.
Wouldn't this create a wide rows problem? From what I understand, all of this campaign data would be stored as one partition on one physical machine. Is my thinking here correct or am I missing something? Please note that other queries have to be supported as well. For example, I might have to share the click logs for a particular publisher(irrespective of the campaign id). In which case, the query would look like:
SELECT * FROM clicks_by_publisher WHERE pub_id=?
This obviously would mean that I would have to create another table by the name 'clicks_by_publisher' etc.
I would also like to point out that I would be using Apache Flink that would analyze, aggregate and group clicks info on a time window of 1 minute. These results will further be stored into MySQL to provide as much support for ad-hoc queries as possible.
Can someone point me out in the right direction.
Is there any other strategy that I can use? Am I missing something?

You have a few options. Three that i feel i can describe. The first is specifying the columns as follows
campaign_id = PRIMARY_KEY
event_code = CLUSTER_KEY
date_time = CLUSTER_KEY
Running greater than or equal queries on cluster keys is possible. Your queries will run.
You're right in saying this would create a single partition for each campaign id. To solve your rows being stored on one physical machine you could create a different table that links campaign ids to row ids in your clicks table. This would reduce the overall data stored on a single machine.
Another solution would be to prefix each campaign id with a machine id. That splits the number of rows between each machine equally. It would mean creating a query prefixed with each machine id for each query but allows for growth.
This leads onto spark. Spark will handle running your query on multiple machines and concatenating the results for you automatically, essentially doing what i described above without the development overhead.
Working with Cassandra myself, i opted for a combination of the first and second solution because it fit with the data structure i was working with. Remember that Cassandra is very efficient at writes so don't be too conservative about creating tables to help filter queries and more sparsely store your data.
Perhaps storing clicks by a hash of campaign id's prefixed by the date will work for you.
Edit : Unless disabled, Cassandra will automatically hash your primary keys using the Murmur3 algorithm.

To model your requirement for fast reads and distributed right, use below table definition -
CREATE TABLE clicks_by_campaign(
camp_id int,
createdon bigint,
pub_id int,
creative_id int,
event_code int,
//other fields like ip, user agent ,device etc,
PRIMARY KEY((camp_id,createdon),event_code))
This will help to distribute data evenly across the partitions. This will also solves our second and third query -
2. SELECT * FROM clicks WHERE campaign_id=? AND date_time>=? AND date_time <=?
Query will be -
SELECT * FROM clicks_by_campaign WHERE token(camp_id, createdon) > token(100, '1111111111111') AND token(camp_id, createdon) <= token(100, '22222222222222')
3. SELECT * FROM clicks WHERE campaign_id=? AND pub_id=? AND AND date_time>=? AND date_time <=? AND event_code=?
The query will be -
SELECT * FROM clicks_by_campaign WHERE token(camp_id, createdon) > token(100, '1111111111111') AND token(camp_id, createdon) <= token(100, '22222222222222') AND event_code=10
First query -
1. SELECT * FROM clicks WHERE campaign_id=?
This is really a anti pattern in cassandra. What I would do , process campaign data batch wise, hourly- daily - weekly - yearly. Think about campaign id again, do we have to process the all the data at a time. Same goes for the 'clicks_by_publisher' .
Edit 1
Could you elaborate on what you mean by 'token' ?
Cassandra partitions rows using partition key. In above table definition we have combined camp_id and createdon values (camp_id and createdon think like composit primary key in RDBMS) to form a partition key. The cassandra partitioner calculates hash value combining camp_id and createdon , and decides which partition the row goes. To retrieve same row, partitioner need to recalculate the hash value. The function toke(), does that.
The time stamp represent the time at click event happened, this value is in milliseconds. Using createdon (type long), will help to evenly distribute the rows across the partitions.
For example for insert statement
1. INSERT INTO clicks_by_campaign (camp_id,createdon ,....) values 100,1111111111111,......) the calculated hash, lets say 111 (combining values 100,1111111111111 ) -- this will go in partition 1
2. INSERT INTO clicks_by_campaign (camp_id,createdon ,....) values (100,2222222222222,......) the calculated hash, lets say 222 (combining values 100,2222222222222 ) -- this will go in partition 2
Java has API to convert a date in to milliseconds. Date represented in milliseconds can be converted to any format using any time zone.
In fact , your use case is right candidate to design a time series data model.

Related

Cassandra Data modelling : Timestamp as partition keys

I need to be able to return all users that performed an action during a specified interval. The table definition in Cassandra is just below:
create table t ( timestamp from, timestamp to, user text, PRIMARY KEY((from,to), user))
I'm trying to implement the following query in Cassandra:
select * from t WHERE from > :startInterval and to < :toInterval
However, this query will obviously not work because it represents a range query on the partition key, forcing Cassandra to search all nodes in the cluster, defeating its purpose as an efficient database.
Is there an efficient to model this query in Cassandra?
My solution would be to split both timestamps into their corresponding years and months and use those as the partition key. The table would look like this:
create table t_updated ( yearFrom int, monthFrom int,yearTo int,monthTo int, timestamp from, timestamp to, user text, PRIMARY KEY((yearFrom,monthFrom,yearTo,monthTo), user) )
If i wanted the users that performed the action between Jan 2017 and July 2017 the query would look like the following:
select user from t_updated where yearFrom IN (2017) and monthFrom IN (1,2,3,4,5,6,7) and yearTo IN (2017) and monthTo IN (1,2,3,4,5,6,7)
Would there be a better way to model this query in Cassandra? How would you approach this issue?
First, the partition key has to operate on equals operator. It is better to use PRIMARY KEY (BUCKET, TIME_STAMP) here where bucket can be combination of year, month (or include days, hrs etc depending on how big your data set is).
It is better to execute multiple queries and combine the result in client side.
The answer depends on the expected number of entries. Thumb rule, is that a partition should not exceed 100mb. So if you expect a moderate number of entries, it would be enough to go with year as partition key.
We use Week-First-Date as a partition key in a iot scenario, where values get written at most once a minute.

How to select data in Cassandra either by ID or date?

I have a very simple data table. But after reading a lot of examples in the internet, I am still more and more confused how to solve the following scenario:
1) The Table
My data table looks like this (without defining the primayr key, as this is my understanding problem):
CREATE TABLE documents (
uid text,
created text,
data text
}
Now my goal is to have to different ways to select data.
2) Select by the UID:
SELECT * FROM documents
WHERE uid = ‘xxxx-yyyyy-zzzz’
3) Select by a date limit
SELECT * FROM documents
WHERE created >= ‘2015-06-05’
So my question is:
What should my table definition in Cassandra look like, so that I can perform these selections?
To achieve both queries, you would need two tables.
First one would look like:
CREATE TABLE documents (
uid text,
created text,
data text,
PRIMARY KEY (uid));
and you retrieve your data with: SELECT * FROM documents WHERE uid='xxxx-yyyy-zzzzz' Of course, uid must be unique. You might want to consider the uuid data type (instead of text)
Second one is more delicate. If you set your partition to the full date, you won't be able to do a range query, as range query is only available on the clustering column. So you need to find the sweet spot for your partition key in order to:
make sure a single partition won't be too large (max 100MB,
otherwise you will run into trouble)
satisfy your query requirements.
As an example:
CREATE TABLE documents_by_date (
year int,
month int,
day int,
uid text,
data text,
PRIMARY KEY ((year, month), day, uid);
This works fine if within a day, you don't have too many documents (so your partition don't grow too much). And this allows you to create queries such as: SELECT * FROM documents_by_date WHERE year=2018 and month=12 and day>=6 and day<=24; If you need to issue a range query across multiple months, you will need to issue multiple queries.
If your partition is too large due to the data field, you will need to remove it from documents_by_date. And use documents table to retrieve the data, given the uid you retreived from documents_by_date.
If your partition is still too large, you will need to add hour in the partition key of documents_by_date.
So overall, it's not a straightforward request, and you will need to find the right balance for yourself when defining your partition key.
If latency is not a huge concern, an alternative would be to use the stratio lucene cassandra plugin, and index your date.
Question does not specify how your data is going to be with respect user and create time. But since its a document, I am assuming that one user will be creating one document at one "created" time.
Below is the table definition you can use.
CREATE TABLE documents (
uid text,
created text,
data text
PRIMARY KEY (uid, created)
) WITH CLUSTERING ORDER BY (created DESC);
WITH CLUSTERING ORDER BY (created DESC) can help you get the data order by created for a given user.
For your first requirement you can query like given below.
SELECT * FROM documents WHERE uid = 'SEARCH_UID';
For your second requirement you can query like given below
SELECT * FROM documents WHERE created > '2018-04-10 11:32:00' ALLOW FILTERING;
Use of Allow Filtering should be used diligently as it scans all partitions. If we have to create a separate table with date as primary key, it becomes tricky if there are many documents being inserted at very same second. Clustering order works best for the requirements where documents for a given user need to be sorted by time.

Cassandra data modeling

So I'm designing this data model for product price tracking.
A product can be followed by many users and an user can follow many products, so it's a many to many relation.
The products are under constant tracking, but a new price is inserted only if it has varied from the previous one.
The users have set an upper price limit for their followed products, so every time a price varies, the preferences are checked and the users will be notified if the price has dropped below their treshold.
So initially I thought of the following product model:
However "subscriberEmails" is a list collection that will handle up to 65536 elements. But being a big data solution, it's a boundary that we don't want to have. So we end up writing a separate table for that:
So now "usersByProduct" can have up to 2 billion columns, fair enough. And the user preferences are stored in a "Map" which is again limited but we think it's a good maximum number of products to follow by user.
Now the problem we're facing is the following:
Every time we want to update a product's price we would have to make a query like this:
INSERT INTO products("Id", date, price) VALUES (7dacedd2-c09b-46c5-8686-00c2a03c71dd, dateof(now()), 24.87); // Example only
But INSERT operations don't admit other conditional clauses than (IF NOT EXISTS) and that isn't what we want. We need to update the price only if it's different from the previous one, so this forces us to make two queries (one for reading current value and another to update it if necessary).
PD. UPDATE operations do have IF conditions but it's not our case because we need an INSERT.
UPDATE products SET date = dateof(now()) WHERE "Id" = 7dacedd2-c09b-46c5-8686-00c2a03c71dd IF price != 20.3; // example only
Don't try to apply a normal model on a cassandra database. It may work but you'll end up with terrible performance and scalability.
The recommended approach to Cassandra data modeling is to first figure out your read queries against the database and structure your data so that these reads are cheap. You'll probably need to duplicate writes somewhat but it's OK because writes are pretty cheap in Cassandra.
For your specific use case, the key query seems to be able to get all users interested in a price change in a product, so you create a table for this, for example:
create table productSubscriptions (
productId uuid,
priceLimit float,
createdAt timestamp,
email text,
primary key (productId,priceLimit,createdAt)
);
but since you also need to know all product subscriptions for a user, you all need a user-keyed table of the same data:
create table userProductSubscriptions (
email text,
productId uuid,
priceLimit float,
primary key (email, productId)
)
With these 2 tables, I guess you can see that all your main queries can be done with a single-row select and your insert/delete are straightforward but will require you to modify both tables in sync.
Obviously, you'll need to flesh out a bit more the schema for your complete need but this should give you an example on how to think about your cassandra schema.
Conditional update issue
For your conditional insert issue, the easiest answer is: do it with an UPDATE if you really need it (update and insert are nearly identical in CQL) but it's a very expensive operation so avoid it if you can.
For your use case, I would split your product table in three :
create table products (
category uuid,
productId uuid,
url text,
price float,
primary key (category, productId)
)
create table productPricingAudit (
productId uuid,
date timestamp,
price float,
primary key (productId, date)
)
create table priceScheduler (
day text,
checktime timestamp,
productId uuid,
url text,
primary key (day, checktime)
)
products table can hold for full catalog, optionally split in categories (so that listing all products in a single category is a single-row select)
productPricingAudit would have an insert with the latest price retrieved whatever it is since this will let you debug any pricing issue you may have
priceScheduler holds all the check to be made for a given day, ordered by check time. Your scheduler simply has to make a column range query on single row whenever it runs.
With such a schema, you don't care about the conditional updates, you simply issue 3 inserts whenever you update a product price even it doesn't change.
Okay, I will try to answer my own question: conditional inserts other than "IF NOT EXISTS" are not supported in Cassandra by the date, period.
The closest thing is a conditional update, but that doesn't work in our scenario. So there's one simple option left: application side logic. This means that you have to read the previous entry and perform the decision on your application. The obvious downside is that 2 queries are performed (one SELECT and one INSERT) which obviously adds latency.
However this suits our application because every time we perform a query to enqueue all items that should be checked, we can select the items urls and their current prices too. So the workers that check the latest price can then make the decision of inserting or not because they have the current price to compare with.
So... A query similar to this would be performed every X minutes:
SELECT id, url, price FROM products WHERE "nextCheckTime" < now();
// example only, wouldn't even work if nextCheckTime is not part of the PK or index
This is a very costly operation to perform on a Cassandra cluster because it has to go through all rows that are stored randomly in different nodes by default. Another downside is that we need some advanced and specific statistics regarding products and users.
So we've decided that a relational database will serve us better than Cassandra in this particular case.
We sadly leave all of Cassandra's advantages (fast inserts, easy scaling, built in sharding...) and look towards a MySQL Cluster or master-slave implementation.

cassandra filtering on an indexed column isn't working

I'm using (the latest version of) Cassandra nosql dbms to model some data.
I'd like to get a count of the number of active customer accounts in the last month.
I've created the following table:
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
So because I want to filter by date, I create an index on the date column:
CREATE INDEX ON active_accounts (date);
When I insert some data, Cassandra automatically updates data on any existing primary key matches, so the following inserts only produce two records:
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer1', 'account1', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377414000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377415000);
This is exactly what I'd like - I won't get a huge table of data, and each entry in the table represents a unique customer account - so no need for a select distinct.
The query I'd like to make - is how many distinct customer accounts are active within the last month say:
Select count(*) from active_accounts where date >= 1418377411000 and date <= 1418397411000 ALLOW FILTERING;
In response to this query, I get the following error:
code=2200 [Invalid query] message="No indexed columns present in by-columns clause with Equal operator"
What am I missing; isn't this the purpose of the Index I created?
Table design in Cassandra is extremely important and it must match the kind of queries that you are trying to preform. The reason that Cassandra is trying to keep you from performing queries on the date column, is that any query along that column will be extremely inefficient.
Table Design - Model your queries
One of the main reasons that Cassandra can be fast is that it partitions user data so that most( 99%)
of queries can be completed without contacting all of the nodes in the cluster. This means less network traffic, less disk access, and faster response time. Unfortunately Cassandra isn't able to determine automatically what the best way to partition data. The end user must determine a schema which fits into the C* datamodel and allows the queries they want at a high speed.
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
This schema will only be efficient for queries that look like
SELECT timestamp FROM active_accounts where customer_name = ? and account_name = ?
This is because on the the cluster the data is actually going to be stored like
node 1: [ ((Bob,1)->Monday), ((Tom,32)->Tuesday)]
node 2: [ ((Candice, 3) -> Friday), ((Sarah,1) -> Monday)]
The PRIMARY KEY for this table says that data should be placed on a node based on the hash of the combination of CustomerName and AccountName. This means we can only look up data quickly if we have both of those pieces of data. Anything outside of that scope becomes a batch job since it requires hitting multiple nodes and filtering over all the data in the table.
To optimize for different queries you need to change the layout of your table or use a distributed analytics framework like Spark or Hadoop.
An example of a different table schema that might work for your purposes would be something like
CREATE TABLE active_accounts
(
start_month timestamp,
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY (start_month, date, customer_name, account_name)
);
In this schema I would put the timestamp of the first day of the month as the partitioning key and date as the first clustering key. This means that multiple account creations that took place in the same month will end up in the same partition and on the same node. The data for a schema like this would look like
node 1: [ (May 1 1999) -> [(May 2 1999, Bob, 1), (May 15 1999,Tom,32)]
This places the account dates in order within each partition making it very fast for doing range slices between particular dates. Unfortunately you would have to add code on the application side to pull down the multiple months that a query might be spanning. This schema takes a lot of (dev) work so if these queries are very infrequent you should use a distributed analytics platform instead.
For more information on this kind of time-series modeling check out:
http://planetcassandra.org/getting-started-with-time-series-data-modeling/
Modeling in general:
http://www.slideshare.net/planetcassandra/cassandra-day-denver-2014-40328174
http://www.slideshare.net/johnny15676/introduction-to-cql-and-data-modeling
Spark and Cassandra:
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
Don't use secondary indexes
Allow filtering was added to the cql syntax to prevent users from accidentally designing queries that will not scale. The secondary indexes are really only for use by those do analytics jobs or those C* users who fully understand the implications. In Cassandra the secondary index lives on every node in your cluster. This means that any query that requires a secondary index necessarily will require contacting every node in the cluster. This will become less and less performant as the cluster grows and is definitely not something you want for a frequent query.

cassandra, which is best schema for user-related data?

I want to store user related data and each chunk of data has it's own id. The id is the user id plus the id of the specific bit of information. Those data also are time based and reads will be say 50% as many as writes. I am thinking of using one of the following:
create table d1(id text,time bigint, data bigint, primary key (id,time)) with cluster order by (time desc)
here the id will be userid+data id, all in 1 string. This means that data for 1 user will be in different nodes.
create table d2(id text,dataid text, time bigint, data bigint, primary key (id,dataid,time)) with cluster order by (time desc)
here the id = userid and dataid is a cluster id. This means all data for a user will be in 1 node.
So for 1 request of this user, I might have to query for 2-3 or more of these rows.
Which will be the best approach in terms of performance?
I assume that you're interested in some sort of time lookup since you're mentioning time series. The answer depends on what type of query you're pursuing.
a) If you want to query all rows for a given user sorted by time, your second schema is better by far. In the first schema your data is partitioned by user and dataid, and so you give up the ability to run fast queries per user, because various data for even that single user will be spread across the cluster (assuming you use the default partitioner).
b) If you want to query by user and dataid sorted by time (to get the history of changes for that single piece of data, let's say), schema 1 would be preferable for the same reasons as outlined in #1.
c) If you want to query by time globally, both schemas will be slow, because you'll need to scan multiple users (the whole cluster) to satisfy the query.
Lastly, writes will be comparatively fast no matter what schema you pick.

Resources