I am trying to convert an SVG arc to a series of line segments. The background is, that I want to draw an arc using (reportlab)[http://www.reportlab.com/].
The svg gives me these parameters (accoring to here).
rx,ry,x-axis-rotation,large-arc-flag,sweep-flag,dx,dy
Now I need to determine lines following this arcs. But I do not understand how I can convert this to something geometrical more usable.
How would I determine the center of the ellipse arc and its rotation?
SVG elliptic arcs are really tricky and took me a while to implement it (even following the SVG specs). I ended up with something like this in C++:
//---------------------------------------------------------------------------
class svg_usek // virtual class for svg_line types
{
public:
int pat; // svg::pat[] index
virtual void reset(){};
virtual double getl (double mx,double my){ return 1.0; };
virtual double getdt(double dl,double mx,double my){ return 0.1; };
virtual void getpnt(double &x,double &y,double t){};
virtual void compute(){};
virtual void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val){};
virtual void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av){};
};
//---------------------------------------------------------------------------
class svg_ela:public svg_usek // sweep = 0 arc goes from line p0->p1 CW
{ // sweep = 1 arc goes from line p0->p1 CCW
public: // larc is unused if |da|=PI
double x0,y0,x1,y1,a,b,alfa; int sweep,larc;
double sx,sy,a0,a1,da,ang; // sx,sy rotated center by ang
double cx,cy; // real center
void reset() { x0=0; y0=0; x1=0; y1=0; a=0; b=0; alfa=0; sweep=false; larc=false; compute(); }
double getl (double mx,double my);
// double getdt(double dl,double mx,double my);
double getdt(double dl,double mx,double my) { int n; double dt; dt=divide(dl,getl(mx,my)); n=floor(divide(1.0,dt)); if (n<1) n=1; return divide(1.0,n); }
void getpnt(double &x,double &y,double t);
void compute();
void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val);
void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av);
svg_ela() {}
svg_ela(svg_ela& a) { *this=a; }
~svg_ela() {}
svg_ela* operator = (const svg_ela *a) { *this=*a; return this; }
//svg_ela* operator = (const svg_ela &a) { ...copy... return this; }
};
//---------------------------------------------------------------------------
void svg_ela::getpnt(double &x,double &y,double t)
{
double c,s,xx,yy;
t=a0+(da*t);
xx=sx+a*cos(t);
yy=sy+b*sin(t);
c=cos(-ang);
s=sin(-ang);
x=xx*c-yy*s;
y=xx*s+yy*c;
}
//---------------------------------------------------------------------------
void svg_ela::compute()
{
double ax,ay,bx,by; // body
double vx,vy,l,db;
int _sweep;
double c,s,e;
ang=pi-alfa;
_sweep=sweep;
if (larc) _sweep=!_sweep;
e=divide(a,b);
c=cos(ang);
s=sin(ang);
ax=x0*c-y0*s;
ay=x0*s+y0*c;
bx=x1*c-y1*s;
by=x1*s+y1*c;
ay*=e; // transform to circle
by*=e;
sx=0.5*(ax+bx); // mid point between A,B
sy=0.5*(ay+by);
vx=(ay-by);
vy=(bx-ax);
l=divide(a*a,(vx*vx)+(vy*vy))-0.25;
if (l<0) l=0;
l=sqrt(l);
vx*=l;
vy*=l;
if (_sweep)
{
sx+=vx;
sy+=vy;
}
else{
sx-=vx;
sy-=vy;
}
a0=atanxy(ax-sx,ay-sy);
a1=atanxy(bx-sx,by-sy);
// ay=divide(ay,e);
// by=divide(by,e);
sy=divide(sy,e);
da=a1-a0;
if (fabs(fabs(da)-pi)<=_acc_zero_ang) // half arc is without larc and sweep is not working instead change a0,a1
{
db=(0.5*(a0+a1))-atanxy(bx-ax,by-ay);
while (db<-pi) db+=pi2; // db<0 CCW ... sweep=1
while (db>+pi) db-=pi2; // db>0 CW ... sweep=0
_sweep=0;
if ((db<0.0)&&(!sweep)) _sweep=1;
if ((db>0.0)&&( sweep)) _sweep=1;
if (_sweep)
{
// a=0; b=0;
if (da>=0.0) a1-=pi2;
if (da< 0.0) a0-=pi2;
}
}
else if (larc) // big arc
{
if ((da< pi)&&(da>=0.0)) a1-=pi2;
if ((da>-pi)&&(da< 0.0)) a0-=pi2;
}
else{ // small arc
if (da>+pi) a1-=pi2;
if (da<-pi) a0-=pi2;
}
da=a1-a0;
// realny stred
c=cos(+ang);
s=sin(+ang);
cx=sx*c-sy*s;
cy=sx*s+sy*c;
}
//---------------------------------------------------------------------------
The atanxy(x,y) is the same as atan2(y,x). You can ignore class svg_usek. Usage of svg_ela is simple first feed the SVG parameters to it:
x0,y0 is start point (from previous <path> element)
x1,y1 is endpoint (x0+dx,y0+dy)
a,b are as yours rx,ry
alfa rotation angle [rad] so you need to convert from degrees...
sweep,larc are as yours.
And then call svg_ela::compute(); that will compute all variables needed for interpolation. When this initialization is done then to obtain any point from the arc just call svg_ela::getpnt(x,y,t); where x,y is the returned coordinate and t=<0,1> is input parameter. All the other methods are not important for you. To render your ARC just do this:
svg_ela arc; // your initialized arc here
int e; double x,y,t;
arc.getpnt(x,y,0.0);
Canvas->MoveTo(x,y);
for (e=1,t=0.0;e;t+=0.02)
{
if (t>=1.0) { t=1.0; e=0; }
arc.getpnt(x,y,t);
Canvas->LineTo(x,y);
}
Do not forget that SVG <g> and <path> can have transform matrices so you should apply them after each svg_ela::getpnt(x,y,t) call.
If you are interested how the stuff works compute() simply:
rotates the space so the ellipse semi-axises are axis aligned.
scale the space so ellipse becomes circle.
compute center point for circle
center lies on line that is perpendicular to line (x0,y0),(x1,y1) and also lies on its midpoint. The distance is computed by Pytagoras and direction from sweep and larc combination.
scale back to ellipse
rotate back
Now we have real center position so also compute the real endpoint angles relative to it. Now for each point on ellipse it is enough to compute it by standard parametric equation of ellipse and rotate to desired position which is what getpnt(x,y,t) does.
Hope it helps a bit.
Here related QA:
Express SVG arc as series of curves
with some images explaining the math behind SVG arcs (using the same variable names as here)
For my Java SVG application I needed a conversion of path arc to lines. I used the above code and converted it into a Java class and performed some cleanup.
package de.berndbock.tinysvg.helper;
/**
* Breaks down SVG arcs into line segments.
*
* #author Bernd Bock <chef#bernd-bock.de>
*/
public class ArcSegmenter {
private static final double PI2 = Math.PI * 2;
private static final double ACC_ZERO_ANG = 0.000001 * Math.PI / 180.0;
private final double x0;
private final double y0;
private final double x1;
private final double y1;
private final double a;
private final double b;
private final double alfa;
private final boolean sweep;
private final boolean larc;
private double sx, sy, a0, a1, da, ang; // sx, sy rotated center by ang
// private double cx, cy; // real center
public ArcSegmenter(double x0, double y0, double x1, double y1 , double a, double b, double alfa, int sweep, int larc) {
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
this.a = a;
this.b = b;
this.alfa = alfa;
this.sweep = sweep != 0;
this.larc = larc != 0;
compute();
}
private void compute() {
double ax, ay, bx, by; // body
double vx, vy, l, db;
boolean _sweep;
double c, s, e;
ang = Math.PI - alfa;
_sweep = sweep;
if (larc) {
_sweep = !_sweep;
}
e = a / b;
c = Math.cos(ang);
s = Math.sin(ang);
ax = x0 * c - y0 * s;
ay = x0 * s + y0 * c;
bx = x1 * c - y1 * s;
by = x1 * s + y1 * c;
ay *= e; // transform to circle
by *= e;
sx = 0.5 * (ax + bx); // mid point between A,B
sy = 0.5 * (ay + by);
vx = (ay - by);
vy = (bx - ax);
l = a * a / (vx * vx + vy * vy) - 0.25;
if (l < 0) {
l = 0;
}
l = Math.sqrt(l);
vx *= l;
vy *= l;
if (_sweep) {
sx += vx;
sy += vy;
}
else {
sx -= vx;
sy -= vy;
}
a0 = Math.atan2(ay - sy, ax - sx);
a1 = Math.atan2(by - sy, bx - sx);
sy = sy / e;
da = a1 - a0;
if (Math.abs(Math.abs(da) - Math.PI) <= ACC_ZERO_ANG) { // half arc is without larc and sweep is not working instead change a0,a1
db = (0.5 * (a0 + a1)) - Math.atan2(by - ay, bx - ax);
while (db < -Math.PI) {
db += PI2; // db<0 CCW ... sweep=1
}
while (db > Math.PI) {
db -= PI2; // db>0 CW ... sweep=0
}
_sweep = false;
if ((db < 0.0) && (!sweep)) {
_sweep = true;
}
if ((db > 0.0) && ( sweep)) {
_sweep = true;
}
if (_sweep) {
if (da >= 0.0) {
a1 -= PI2;
}
if (da < 0.0) {
a0 -= PI2;
}
}
}
else if (larc) { // big arc
if ((da < Math.PI) && (da >= 0.0)) {
a1 -= PI2;
}
if ((da > -Math.PI) && (da < 0.0)) {
a0 -= PI2;
}
}
else { // small arc
if (da > Math.PI) {
a1 -= PI2;
}
if (da < -Math.PI) {
a0 -= PI2;
}
}
da = a1 - a0;
// center point calculation:
// c = Math.cos(ang);
// s = Math.sin(ang);
// cx = sx * c - sy * s;
// cy = sx * s + sy * c;
}
public Point getpnt(double t) {
Point result = new Point();
double c, s, x, y;
t = a0 + da * t;
x = sx + a * Math.cos(t);
y = sy + b * Math.sin(t);
c = Math.cos(-ang);
s = Math.sin(-ang);
result.x = x * c - y * s;
result.y = x * s + y * c;
return result;
}
// public Point getCenterPoint() {
// return new Point(cx, cy);
// }
}
If you need the center point, then uncomment the respective lines.
Sample code to give you an idea of the usage:
ArcSegmenter segmenter = new ArcSegmenter(currentPoint.x, currentPoint.y, endPoint.x, endPoint.y, rx, ry, phi, sf, lf);
Point p1, p2;
p1 = segmenter.getpnt(0.0);
Line line;
for (double t = increment; t < 1.000001f; t += increment) {
p2 = segmenter.getpnt(t);
line = new Line(null, parent, p1.x, p1.y, p2.x, p2.y);
elements.add(line);
p1 = p2;
}
Related
I want to make my dot program turn around when they reach edge
so basically i just simply calculate
x = width/2+cos(a)*20;
y = height/2+sin(a)*20;
it's make circular movement. so i want to make this turn around by checking the edge. i also already make sure that y reach the if condition using println command
class particles {
float x, y, a, r, cosx, siny;
particles() {
x = width/2; y = height/2; a = 0; r = 20;
}
void display() {
ellipse(x, y, 20, 20);
}
void explode() {
a = a + 0.1;
cosx = cos(a)*r;
siny = sin(a)*r;
x = x + cosx;
y = y + siny;
}
void edge() {
if (x>width||x<0) cosx*=-1;
if (y>height||y<0) siny*=-1;
}
}
//setup() and draw() function
particles part;
void setup(){
size (600,400);
part = new particles();
}
void draw(){
background(40);
part.display();
part.explode();
part.edge();
}
they just ignore the if condition
There is no problem with your check, the problem is with the fact that presumably the very next time through draw() you ignore what you did in response to the check by resetting the values of cosx and siny.
I recommend creating two new variables, dx and dy ("d" for "direction") which will always be either +1 and -1 and change these variables in response to your edge check. Here is a minimal example:
float a,x,y,cosx,siny;
float dx,dy;
void setup(){
size(400,400);
background(0);
stroke(255);
noFill();
x = width/2;
y = height/2;
dx = 1;
dy = 1;
a = 0;
}
void draw(){
ellipse(x,y,10,10);
cosx = dx*20*cos(a);
siny = dy*20*sin(a);
a += 0.1;
x += cosx;
y += siny;
if (x > width || x < 0)
dx = -1*dx;
if (y > height || y < 0)
dy = -1*dy;
}
When you run this code you will observe the circles bouncing off the edges:
I have made an implementation of the Reaction-Diffusion algorithm on Processing 3.1.1, following a video tutorial. I have made some adaptations on my code, like implementing it on a torus space, instead of a bounded box, like the video.
However, I ran into this annoying issue, that the code runs really slow, proportional to the canvas size (larger, slower). With that, I tried optmizing the code, according to my (limited) knowledge. The main thing I did was to reduce the number of loops running.
Even then, my code still ran quite slow.
Since I have noticed that with a canvas of 50 x 50 in size, the algorithm ran at a good speed, I tried making it multithreaded, in such a way that the canvas would be divided between the threads, and each thread would run the algorithm for a small region of the canvas.
All threads read from the current state of the canvas, and all write to the future state of the canvas. The canvas is then updated using Processing's pixel array.
However, even with multithreading, I didn't see any performance improvement. By the contrary, I saw it getting worse. Now sometimes the canvas flicker between a rendered state and completely white, and in some cases, it doesn't even render.
I'm quite sure that I'm doing something wrong, or I may be taking the wrong approach to optimizing this algorithm. And now, I'm asking for help to understand what I'm doing wrong, and how I could fix or improve my code.
Edit: Implementing ahead of time calculation and rendering using a buffer of PImage objects has removed flickering, but the calculation step on the background doesn't run fast enough to fill the buffer.
My Processing Sketch is below, and thanks in advance.
ArrayList<PImage> buffer = new ArrayList<PImage>();
Thread t;
Buffer b;
PImage currentImage;
Point[][] grid; //current state
Point[][] next; //future state
//Reaction-Diffusion algorithm parameters
final float dA = 1.0;
final float dB = 0.5;
//default: f = 0.055; k = 0.062
//mitosis: f = 0.0367; k = 0.0649
float feed = 0.055;
float kill = 0.062;
float dt = 1.0;
//multi-threading parameters to divide canvas
int threadSizeX = 50;
int threadSizeY = 50;
//red shading colors
color red = color(255, 0, 0);
color white = color(255, 255, 255);
color black = color(0, 0, 0);
//if redShader is false, rendering will use a simple grayscale mode
boolean redShader = true;
//simple class to hold chemicals A and B amounts
class Point
{
float a;
float b;
Point(float a, float b)
{
this.a = a;
this.b = b;
}
}
void setup()
{
size(300, 300);
//initialize matrices with A = 1 and B = 0
grid = new Point[width][];
next = new Point[width][];
for (int x = 0; x < width; x++)
{
grid[x] = new Point[height];
next[x] = new Point[height];
for (int y = 0; y < height; y++)
{
grid[x][y] = new Point(1.0, 0.0);
next[x][y] = new Point(1.0, 0.0);
}
}
int a = (int) random(1, 20); //seed some areas with B = 1.0
for (int amount = 0; amount < a; amount++)
{
int siz = 2;
int x = (int)random(width);
int y = (int)random(height);
for (int i = x - siz/2; i < x + siz/2; i++)
{
for (int j = y - siz/2; j < y + siz/2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
grid[i2][j2].b = 1.0;
}
}
}
initializeThreads();
}
/**
* Divide canvas between threads
*/
void initializeThreads()
{
ArrayList<Reaction> reactions = new ArrayList<Reaction>();
for (int x1 = 0; x1 < width; x1 += threadSizeX)
{
for (int y1 = 0; y1 < height; y1 += threadSizeY)
{
int x2 = x1 + threadSizeX;
int y2 = y1 + threadSizeY;
if (x2 > width - 1)
{
x2 = width - 1;
}
if (y2 > height - 1)
{
y2 = height - 1;
}
Reaction r = new Reaction(x1, y1, x2, y2);
reactions.add(r);
}
}
b = new Buffer(reactions);
t = new Thread(b);
t.start();
}
void draw()
{
if (buffer.size() == 0)
{
return;
}
PImage i = buffer.get(0);
image(i, 0, 0);
buffer.remove(i);
//println(frameRate);
println(buffer.size());
//saveFrame("output/######.png");
}
/**
* Faster than calling built in pow() function
*/
float pow5(float x)
{
return x * x * x * x * x;
}
class Buffer implements Runnable
{
ArrayList<Reaction> reactions;
boolean calculating = false;
public Buffer(ArrayList<Reaction> reactions)
{
this.reactions = reactions;
}
public void run()
{
while (true)
{
if (buffer.size() < 1000)
{
calculate();
if (isDone())
{
buffer.add(currentImage);
Point[][] temp;
temp = grid;
grid = next;
next = temp;
calculating = false;
}
}
}
}
boolean isDone()
{
for (Reaction r : reactions)
{
if (!r.isDone())
{
return false;
}
}
return true;
}
void calculate()
{
if (calculating)
{
return;
}
currentImage = new PImage(width, height);
for (Reaction r : reactions)
{
r.calculate();
}
calculating = true;
}
}
class Reaction
{
int x1;
int x2;
int y1;
int y2;
Thread t;
public Reaction(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public void calculate()
{
Calculator c = new Calculator(x1, y1, x2, y2);
t = new Thread(c);
t.start();
}
public boolean isDone()
{
if (t.getState() == Thread.State.TERMINATED)
{
return true;
} else
{
return false;
}
}
}
class Calculator implements Runnable
{
int x1;
int x2;
int y1;
int y2;
//weights for calculating the Laplacian for A and B
final float[][] laplacianWeights = {{0.05, 0.2, 0.05},
{0.2, -1, 0.2},
{0.05, 0.2, 0.05}};
/**
* x1, x2, y1, y2 delimit a rectangle. The object will only work within it
*/
public Calculator(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
//println("x1: " + x1 + ", y1: " + y1 + ", x2: " + x2 + ", y2: " + y2);
}
#Override
public void run()
{
reaction();
show();
}
public void reaction()
{
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
float a = grid[x][y].a;
float b = grid[x][y].b;
float[] l = laplaceAB(x, y);
float a2 = reactionDiffusionA(a, b, l[0]);
float b2 = reactionDiffusionB(a, b, l[1]);
next[x][y].a = a2;
next[x][y].b = b2;
}
}
}
float reactionDiffusionA(float a, float b, float lA)
{
return a + ((dA * lA) - (a * b * b) + (feed * (1 - a))) * dt;
}
float reactionDiffusionB(float a, float b, float lB)
{
return b + ((dB * lB) + (a * b * b) - ((kill + feed) * b)) * dt;
}
/**
* Calculates Laplacian for both A and B at same time, to reduce amount of loops executed
*/
float[] laplaceAB(int x, int y)
{
float[] l = {0.0, 0.0};
for (int i = x - 1; i < x + 2; i++)
{
for (int j = y - 1; j < y + 2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
int weightX = (i - x) + 1;
int weightY = (j - y) + 1;
l[0] += laplacianWeights[weightX][weightY] * grid[i2][j2].a;
l[1] += laplacianWeights[weightX][weightY] * grid[i2][j2].b;
}
}
return l;
}
public void show()
{
currentImage.loadPixels();
//renders the canvas using the pixel array
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
float a = next[x][y].a;
float b = next[x][y].b;
int pix = x + y * width;
float diff = (a - b);
color c;
if (redShader) //aply red shading
{
float thresh = 0.5;
if (diff < thresh)
{
float diff2 = map(pow5(diff), 0, pow5(thresh), 0, 1);
c = lerpColor(black, red, diff2);
} else
{
float diff2 = map(1 - pow5(-diff + 1), 1 - pow5(-thresh + 1), 1, 0, 1);
c = lerpColor(red, white, diff2);
}
} else //apply gray scale shading
{
c = color(diff * 255, diff * 255, diff * 255);
}
currentImage.pixels[pix] = c;
}
}
currentImage.updatePixels();
}
}
A programmer had a problem. He thought “I know, I’ll solve it with threads!”. has Now problems. two he
Processing uses a single rendering thread.
It does this for good reason, and most other renderers do the same thing. In fact, I don't know of any multi-threaded renderers.
You should only change what's on the screen from Processing's main rendering thread. In other words, you should only change stuff from Processing's functions, not your own thread. This is what's causing the flickering you're seeing. You're changing stuff as it's being drawn to the screen, which is a horrible idea. (And it's why Processing uses a single rendering thread in the first place.)
You could try to use your multiple threads to do the processing, not the rendering. But I highly doubt that's going to be worth it, and like you saw, it might even make things worse.
If you want to speed up your sketch, you might also consider doing the processing ahead of time instead of in real time. Do all your calculations at the beginning of the sketch, and then just reference the results of the calculations when it's time to draw the frame. Or you could draw to a PImage ahead of time, and then just draw those.
I hope there will be an easy answer, as often times, something stripped out of Compact Framework has a way of being performed in a seemingly roundabout manner, but works just as well as the full framework (or can be made more efficient).
Simply put, I wish to be able to do a function similar to System.Drawing.Graphics.DrawArc(...) in Compact Framework 2.0.
It is for a UserControl's OnPaint override, where an arc is being drawn inside an ellipse I already filled.
Essentially (close pseudo code, please ignore imperfections in parameters):
FillEllipse(ellipseFillBrush, largeEllipseRegion);
DrawArc(arcPen, innerEllipseRegion, startAngle, endAngle); //not available in CF
I am only drawing arcs in 90 degree spaces, so the bottom right corner of the ellipse's arc, or the top left. If the answer for ANY angle is really roundabout, difficult, or inefficient, while there's an easy solution for just doing just a corner of an ellipse, I'm fine with the latter, though the former would help anyone else who has a similar question.
I use this code, then use FillPolygon or DrawPolygon with the output points:
private Point[] CreateArc(float StartAngle, float SweepAngle, int PointsInArc, int Radius, int xOffset, int yOffset, int LineWidth)
{
if(PointsInArc < 0)
PointsInArc = 0;
if(PointsInArc > 360)
PointsInArc = 360;
Point[] points = new Point[PointsInArc * 2];
int xo;
int yo;
int xi;
int yi;
float degs;
double rads;
for(int p = 0 ; p < PointsInArc ; p++)
{
degs = StartAngle + ((SweepAngle / PointsInArc) * p);
rads = (degs * (Math.PI / 180));
xo = (int)(Radius * Math.Sin(rads));
yo = (int)(Radius * Math.Cos(rads));
xi = (int)((Radius - LineWidth) * Math.Sin(rads));
yi = (int)((Radius - LineWidth) * Math.Cos(rads));
xo += (Radius + xOffset);
yo = Radius - yo + yOffset;
xi += (Radius + xOffset);
yi = Radius - yi + yOffset;
points[p] = new Point(xo, yo);
points[(PointsInArc * 2) - (p + 1)] = new Point(xi, yi);
}
return points;
}
I had this exactly this problem and me and my team solved that creating a extension method for compact framework graphics class;
I hope I could help someone, cuz I spent a lot of work to get this nice solution
Mauricio de Sousa Coelho
Embedded Software Engineer
public static class GraphicsExtension
{
// Implements the native Graphics.DrawArc as an extension
public static void DrawArc(this Graphics g, Pen pen, float x, float y, float width, float height, float startAngle, float sweepAngle)
{
//Configures the number of degrees for each line in the arc
int degreesForNewLine = 5;
//Calculates the number of points in the arc based on the degrees for new line configuration
int pointsInArc = Convert.ToInt32(Math.Ceiling(sweepAngle / degreesForNewLine)) + 1;
//Minimum points for an arc is 3
pointsInArc = pointsInArc < 3 ? 3 : pointsInArc;
float centerX = (x + width) / 2;
float centerY = (y + height) / 2;
Point previousPoint = GetEllipsePoint(x, y, width, height, startAngle);
//Floating point precision error occurs here
double angleStep = sweepAngle / pointsInArc;
Point nextPoint;
for (int i = 1; i < pointsInArc; i++)
{
//Increments angle and gets the ellipsis associated to the incremented angle
nextPoint = GetEllipsePoint(x, y, width, height, (float)(startAngle + angleStep * i));
//Connects the two points with a straight line
g.DrawLine(pen, previousPoint.X, previousPoint.Y, nextPoint.X, nextPoint.Y);
previousPoint = nextPoint;
}
//Garantees connection with the last point so that acumulated errors cannot
//cause discontinuities on the drawing
nextPoint = GetEllipsePoint(x, y, width, height, startAngle + sweepAngle);
g.DrawLine(pen, previousPoint.X, previousPoint.Y, nextPoint.X, nextPoint.Y);
}
// Retrieves a point of an ellipse with equation:
private static Point GetEllipsePoint(float x, float y, float width, float height, float angle)
{
return new Point(Convert.ToInt32(((Math.Cos(ToRadians(angle)) * width + 2 * x + width) / 2)), Convert.ToInt32(((Math.Sin(ToRadians(angle)) * height + 2 * y + height) / 2)));
}
// Converts an angle in degrees to the same angle in radians.
private static float ToRadians(float angleInDegrees)
{
return (float)(angleInDegrees * Math.PI / 180);
}
}
Following up from #ctacke's response, which created an arc-shaped polygon for a circle (height == width), I edited it further and created a function for creating a Point array for a curved line, as opposed to a polygon, and for any ellipse.
Note: StartAngle here is NOON position, 90 degrees is the 3 o'clock position, so StartAngle=0 and SweepAngle=90 makes an arc from noon to 3 o'clock position.
The original DrawArc method has the 3 o'clock as 0 degrees, and 90 degrees is the 6 o'clock position. Just a note in replacing DrawArc with CreateArc followed by DrawLines with the resulting Point[] array.
I'd play with this further to change that, but why break something that's working?
private Point[] CreateArc(float StartAngle, float SweepAngle, int PointsInArc, int ellipseWidth, int ellipseHeight, int xOffset, int yOffset)
{
if (PointsInArc < 0)
PointsInArc = 0;
if (PointsInArc > 360)
PointsInArc = 360;
Point[] points = new Point[PointsInArc];
int xo;
int yo;
float degs;
double rads;
//could have WidthRadius and HeightRadius be parameters, but easier
// for maintenance to have the diameters sent in instead, matching closer
// to DrawEllipse and similar methods
double radiusW = (double)ellipseWidth / 2.0;
double radiusH = (double)ellipseHeight / 2.0;
for (int p = 0; p < PointsInArc; p++)
{
degs = StartAngle + ((SweepAngle / PointsInArc) * p);
rads = (degs * (Math.PI / 180));
xo = (int)Math.Round(radiusW * Math.Sin(rads), 0);
yo = (int)Math.Round(radiusH * Math.Cos(rads), 0);
xo += (int)Math.Round(radiusW, 0) + xOffset;
yo = (int)Math.Round(radiusH, 0) - yo + yOffset;
points[p] = new Point(xo, yo);
}
return points;
}
I need a algorithm for detecting if a circle has hit a square, and I saw this post:
Circle-Rectangle collision detection (intersection)
It looks like I should go for ShreevatsaR's answer, but I am a math fool, and I have no idea how to finish the algorithm. Could anyone find the time to make a complete example for me please, I have searched the net for this, and have yet found no working example.
Thank you very much
Soeren
EDIT:
Ok here is my attempt. It is not working, it never detects any collisions.
typedef struct {
double x;
double y;
} point;
typedef struct {
point one;
point two;
} segment;
typedef struct {
point center;
double radius;
} circle;
typedef struct {
point p;
int width;
int height;
point a;
point b;
point c;
point d;
} rectangle;
double slope(point one, point two) {
return (double)(one.y-two.y)/(one.x-two.x);
}
double distance(point p, segment s) {
// Line one is the original line that was specified, and line two is
// the line we're constructing that runs through the specified point,
// at a right angle to line one.
//
// if it's a vertical line return the horizontal distance
if ( s.one.x == s.two.x)
return fabs(s.one.x - p.x);
// if it's a horizontal line return the vertical distance
if ( s.one.y == s.two.y )
return fabs(s.one.y - p.y);
// otherwise, find the slope of the line
double m_one = slope(s.one, s.two);
// the other slope is at a right angle.
double m_two = -1.0 / m_one;
// find the y-intercepts.
double b_one = s.one.y - s.one.x * m_one;
double b_two = p.y - p.x * m_two;
// find the point of intersection
double x = (b_two - b_one) / (m_one - m_two);
double y = m_one * x + b_one;
// find the x and y distances
double x_dist = x - p.x;
double y_dist = y - p.y;
// and return the total distance.
return sqrt(x_dist * x_dist + y_dist * y_dist);
}
bool intersectsCircle(segment s, circle c) {
return distance(c.center, s) <= c.radius;
}
bool pointInRectangle(point p, rectangle r)
{
float right = r.p.x + r.width;
float left = r.p.x - r.width;
float top = r.p.y + r.height;
float bottom = r.p.y - r.height;
return ((left <= p.x && p.x <= right) && (top <= p.y && p.y <= bottom));
}
bool intersect(circle c, rectangle r) {
segment ab;
ab.one = r.a;
ab.two = r.b;
segment bc;
ab.one = r.b;
ab.two = r.c;
segment cd;
ab.one = r.c;
ab.two = r.d;
segment da;
ab.one = r.d;
ab.two = r.a;
return pointInRectangle(c.center, r) ||
intersectsCircle(ab, c) ||
intersectsCircle(bc, c) ||
intersectsCircle(cd, c) ||
intersectsCircle(da, c);
}
The primary part he seems to have left is the InteresectsCircle(line, circle).
#include <math.h>
typedef struct {
double x;
double y;
} point;
typedef struct {
point one;
point two;
} segment;
typedef struct {
point center;
double radius;
} circle;
double slope(point &one, point &two) {
return (double)(one.y-two.y)/(one.x-two.x);
}
double distance(point &p, segment &s) {
// Line one is the original line that was specified, and line two is
// the line we're constructing that runs through the specified point,
// at a right angle to line one.
//
// if it's a vertical line return the horizontal distance
if ( s.one.x == s.two.x)
return fabs(s.one.x - p.x);
// if it's a horizontal line return the vertical distance
if ( s.one.y == s.two.y )
return fabs(s.one.y - p.y);
// otherwise, find the slope of the line
double m_one = slope(s.one, s.two);
// the other slope is at a right angle.
double m_two = -1.0 / m_one;
// find the y-intercepts.
double b_one = s.one.y - s.one.x * m_one;
double b_two = p.y - p.x * m_two;
// find the point of intersection
double x = (b_two - b_one) / (m_one - m_two);
double y = m_one * x + b_one;
// find the x and y distances
double x_dist = x - p.x;
double y_dist = y - p.y;
// and return the total distance.
return sqrt(x_dist * x_dist + y_dist * y_dist);
}
bool IntersectsCircle(segment s, circle c) {
return distance(circle.center, s) <= circle.radius;
}
I have some code in C++ (lightly templated) that should do these intersection tests, but I haven't had time to test them yet. In particular, I have the segment-circle intersection test as well as parallelogram-circle intersection, which is supposed to compute the intersection area and intersection points. Again, this is completely untested as of the writing of this comment, so you will need to test/adapt them to your needs.
I need a good source for reading up on how to create a algorithm to take two polylines (a path comprised of many lines) and performing a union, subtraction, or intersection between them. This is tied to a custom API so I need to understand the underlying algorithm.
Plus any sources in a VB dialect would be doubly helpful.
This catalogue of implementations of intersection algorithms from the Stony Brook Algorithm Repository might be useful. The repository is managed by Steven Skiena,
author of a very well respected book on algorithms: The Algorithm Design Manual.
That's his own Amazon exec link by the way :)
Several routines for you here. Hope you find them useful :-)
// routine to calculate the square of either the shortest distance or largest distance
// from the CPoint to the intersection point of a ray fired at an angle flAngle
// radians at an array of line segments
// this routine returns TRUE if an intersection has been found in which case flD
// is valid and holds the square of the distance.
// and returns FALSE if no valid intersection was found
// If an intersection was found, then intersectionPoint is set to the point found
bool CalcIntersection(const CPoint &cPoint,
const float flAngle,
const int nVertexTotal,
const CPoint *pVertexList,
const BOOL bMin,
float &flD,
CPoint &intersectionPoint)
{
float d, dsx, dsy, dx, dy, lambda, mu, px, py;
int p0x, p0y, p1x, p1y;
// get source position
const float flSx = (float)cPoint.x;
const float flSy = -(float)cPoint.y;
// calc trig functions
const float flTan = tanf(flAngle);
const float flSin = sinf(flAngle);
const float flCos = cosf(flAngle);
const bool bUseSin = fabsf(flSin) > fabsf(flCos);
// initialise distance
flD = (bMin ? FLT_MAX : 0.0f);
// for each line segment in protective feature
for(int i = 0; i < nVertexTotal; i++)
{
// get coordinates of line (negate the y value so the y-axis is upwards)
p0x = pVertexList[i].x;
p0y = -pVertexList[i].y;
p1x = pVertexList[i + 1].x;
p1y = -pVertexList[i + 1].y;
// calc. deltas
dsx = (float)(cPoint.x - p0x);
dsy = (float)(-cPoint.y - p0y);
dx = (float)(p1x - p0x);
dy = (float)(p1y - p0y);
// calc. denominator
d = dy * flTan - dx;
// if line & ray are parallel
if(fabsf(d) < 1.0e-7f)
continue;
// calc. intersection point parameter
lambda = (dsy * flTan - dsx) / d;
// if intersection is not valid
if((lambda <= 0.0f) || (lambda > 1.0f))
continue;
// if sine is bigger than cosine
if(bUseSin){
mu = ((float)p0x + lambda * dx - flSx) / flSin;
} else {
mu = ((float)p0y + lambda * dy - flSy) / flCos;
}
// if intersection is valid
if(mu >= 0.0f){
// calc. intersection point
px = (float)p0x + lambda * dx;
py = (float)p0y + lambda * dy;
// calc. distance between intersection point & source point
dx = px - flSx;
dy = py - flSy;
d = dx * dx + dy * dy;
// compare with relevant value
if(bMin){
if(d < flD)
{
flD = d;
intersectionPoint.x = RoundValue(px);
intersectionPoint.y = -RoundValue(py);
}
} else {
if(d > flD)
{
flD = d;
intersectionPoint.x = RoundValue(px);
intersectionPoint.y = -RoundValue(py);
}
}
}
}
// return
return(bMin ? (flD != FLT_MAX) : (flD != 0.0f));
}
// Routine to calculate the square of the distance from the CPoint to the
// intersection point of a ray fired at an angle flAngle radians at a line.
// This routine returns TRUE if an intersection has been found in which case flD
// is valid and holds the square of the distance.
// Returns FALSE if no valid intersection was found.
// If an intersection was found, then intersectionPoint is set to the point found.
bool CalcIntersection(const CPoint &cPoint,
const float flAngle,
const CPoint &PointA,
const CPoint &PointB,
const bool bExtendLine,
float &flD,
CPoint &intersectionPoint)
{
// get source position
const float flSx = (float)cPoint.x;
const float flSy = -(float)cPoint.y;
// calc trig functions
float flTan = tanf(flAngle);
float flSin = sinf(flAngle);
float flCos = cosf(flAngle);
const bool bUseSin = fabsf(flSin) > fabsf(flCos);
// get coordinates of line (negate the y value so the y-axis is upwards)
const int p0x = PointA.x;
const int p0y = -PointA.y;
const int p1x = PointB.x;
const int p1y = -PointB.y;
// calc. deltas
const float dsx = (float)(cPoint.x - p0x);
const float dsy = (float)(-cPoint.y - p0y);
float dx = (float)(p1x - p0x);
float dy = (float)(p1y - p0y);
// Calc. denominator
const float d = dy * flTan - dx;
// If line & ray are parallel
if(fabsf(d) < 1.0e-7f)
return false;
// calc. intersection point parameter
const float lambda = (dsy * flTan - dsx) / d;
// If extending line to meet point, don't check for ray missing line
if(!bExtendLine)
{
// If intersection is not valid
if((lambda <= 0.0f) || (lambda > 1.0f))
return false; // Ray missed line
}
// If sine is bigger than cosine
float mu;
if(bUseSin){
mu = ((float)p0x + lambda * dx - flSx) / flSin;
} else {
mu = ((float)p0y + lambda * dy - flSy) / flCos;
}
// if intersection is valid
if(mu >= 0.0f)
{
// calc. intersection point
const float px = (float)p0x + lambda * dx;
const float py = (float)p0y + lambda * dy;
// calc. distance between intersection point & source point
dx = px - flSx;
dy = py - flSy;
flD = (dx * dx) + (dy * dy);
intersectionPoint.x = RoundValue(px);
intersectionPoint.y = -RoundValue(py);
return true;
}
return false;
}
// Fillet (with a radius of 0) two lines. From point source fired at angle (radians) to line Line1A, Line1B.
// Modifies line end point Line1B. If the ray does not intersect line, then it is rotates every 90 degrees
// and tried again until fillet is complete.
void Fillet(const CPoint &source, const float fThetaRadians, const CPoint &Line1A, CPoint &Line1B)
{
if(Line1A == Line1B)
return; // No line
float dist;
if(CalcIntersection(source, fThetaRadians, Line1A, Line1B, true, dist, Line1B))
return;
if(CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI * 0.5f), Line1A, Line1B, true, dist, Line1B))
return;
if(CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI), Line1A, Line1B, true, dist, Line1B))
return;
if(!CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI * 1.5f), Line1A, Line1B, true, dist, Line1B))
ASSERT(FALSE); // Could not find intersection?
}
// routine to determine if an array of line segments cross gridSquare
// x and y give the float coordinates of the corners
BOOL CrossGridSquare(int nV, const CPoint *pV,
const CRect &extent, const CRect &gridSquare)
{
// test extents
if( (extent.right < gridSquare.left) ||
(extent.left > gridSquare.right) ||
(extent.top > gridSquare.bottom) ||
(extent.bottom < gridSquare.top))
{
return FALSE;
}
float a, b, c, dx, dy, s, x[4], y[4];
int max_x, max_y, min_x, min_y, p0x, p0y, p1x, p1y, sign, sign_old;
// construct array of vertices for grid square
x[0] = (float)gridSquare.left;
y[0] = (float)gridSquare.top;
x[1] = (float)(gridSquare.right);
y[1] = y[0];
x[2] = x[1];
y[2] = (float)(gridSquare.bottom);
x[3] = x[0];
y[3] = y[2];
// for each line segment
for(int i = 0; i < nV; i++)
{
// get end-points
p0x = pV[i].x;
p0y = pV[i].y;
p1x = pV[i + 1].x;
p1y = pV[i + 1].y;
// determine line extent
if(p0x > p1x){
min_x = p1x;
max_x = p0x;
} else {
min_x = p0x;
max_x = p1x;
}
if(p0y > p1y){
min_y = p1y;
max_y = p0y;
} else {
min_y = p0y;
max_y = p1y;
}
// test to see if grid square is outside of line segment extent
if( (max_x < gridSquare.left) ||
(min_x > gridSquare.right) ||
(max_y < gridSquare.top) ||
(min_y > gridSquare.bottom))
{
continue;
}
// calc. line equation
dx = (float)(p1x - p0x);
dy = (float)(p1y - p0y);
a = dy;
b = -dx;
c = -dy * (float)p0x + dx * (float)p0y;
// evaluate line eqn. at first grid square vertex
s = a * x[0] + b * y[0] + c;
if(s < 0.0f){
sign_old = -1;
} else if(s > 1.0f){
sign_old = 1;
} else {
sign_old = 0;
}
// evaluate line eqn. at other grid square vertices
for (int j = 1; j < 4; j++)
{
s = a * x[j] + b * y[j] + c;
if(s < 0.0f){
sign = -1;
} else if(s > 1.0f){
sign = 1;
} else {
sign = 0;
}
// if there has been a chnage in sign
if(sign != sign_old)
return TRUE;
}
}
return FALSE;
}
// calculate the square of the shortest distance from point s
// and the line segment between p0 and p1
// t is the point on the line from which the minimum distance
// is measured
float CalcShortestDistanceSqr(const CPoint &s,
const CPoint &p0,
const CPoint &p1,
CPoint &t)
{
// if point is at a vertex
if((s == p0) || (s == p1))
return(0.0F);
// calc. deltas
int dx = p1.x - p0.x;
int dy = p1.y - p0.y;
int dsx = s.x - p0.x;
int dsy = s.y - p0.y;
// if both deltas are zero
if((dx == 0) && (dy == 0))
{
// shortest distance is distance is to either vertex
float l = (float)(dsx * dsx + dsy * dsy);
t = p0;
return(l);
}
// calc. point, p, on line that is closest to sourcePosition
// p = p0 + l * (p1 - p0)
float l = (float)(dsx * dx + dsy * dy) / (float)(dx * dx + dy * dy);
// if intersection is beyond p0
if(l <= 0.0F){
// shortest distance is to p0
l = (float)(dsx * dsx + dsy * dsy);
t = p0;
// else if intersection is beyond p1
} else if(l >= 1.0F){
// shortest distance is to p1
dsx = s.x - p1.x;
dsy = s.y - p1.y;
l = (float)(dsx * dsx + dsy * dsy);
t = p1;
// if intersection is between line end points
} else {
// calc. perpendicular distance
float ldx = (float)dsx - l * (float)dx;
float ldy = (float)dsy - l * (float)dy;
t.x = p0.x + RoundValue(l * (float)dx);
t.y = p0.y + RoundValue(l * (float)dy);
l = ldx * ldx + ldy * ldy;
}
return(l);
}
// Calculates the bounding rectangle around a set of points
// Returns TRUE if the rectangle is not empty (has area), FALSE otherwise
// Opposite of CreateRectPoints()
BOOL CalcBoundingRectangle(const CPoint *pVertexList, const int nVertexTotal, CRect &rect)
{
rect.SetRectEmpty();
if(nVertexTotal < 2)
{
ASSERT(FALSE); // Must have at least 2 points
return FALSE;
}
// First point, set rectangle (no area at this point)
rect.left = rect.right = pVertexList[0].x;
rect.top = rect.bottom = pVertexList[0].y;
// Increst rectangle by looking at other points
for(int n = 1; n < nVertexTotal; n++)
{
if(rect.left > pVertexList[n].x) // Take minimum
rect.left = pVertexList[n].x;
if(rect.right < pVertexList[n].x) // Take maximum
rect.right = pVertexList[n].x;
if(rect.top > pVertexList[n].y) // Take minimum
rect.top = pVertexList[n].y;
if(rect.bottom < pVertexList[n].y) // Take maximum
rect.bottom = pVertexList[n].y;
}
rect.NormalizeRect(); // Normalise rectangle
return !(rect.IsRectEmpty());
}