Transformer operating on multiple features in pyspark.ml - apache-spark

I want to make my own transformer of features in a DataFrame, so that I add a column which is, for example, a difference between two other columns. I followed this question, but the transformer there operates on one column only. pyspark.ml.Transformer takes a string as an argument for inputCol, so of course I can not specify multiple columns.
So basically, what I want to achieve is a _transform() method that resembles this one:
def _transform(self, dataset):
out_col = self.getOutputCol()
in_col = dataset.select([self.getInputCol()])
# Define transformer logic
def f(col1, col2):
return col1 - col2
t = IntegerType()
return dataset.withColumn(out_col, udf(f, t)(in_col))
How is this possible to do?

I managed to solve the problem by first creating a Vector out of the set of features that I want to operate on, and then applying the transform on the newly generated vector feature. Below is an example code of how to make a new feature which is a different of two other features:
class MeasurementDifferenceTransformer(Transformer, HasInputCol, HasOutputCol):
#keyword_only
def __init__(self, inputCol=None, outputCol=None):
super(MeasurementDifferenceTransformer, self).__init__()
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
#keyword_only
def setParams(self, inputCol=None, outputCol=None):
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)
def _transform(self, dataset):
out_col = self.getOutputCol()
in_col = dataset[self.getInputCol()]
# Define transformer logic
def f(vector):
return float(vector[0] - vector[1])
t = FloatType()
return dataset.withColumn(out_col, udf(lambda x: f(x), t)(in_col))
To use it, we first instantiate a VectorAssembler to create the a vector feature:
pair_assembler = VectorAssembler(inputCols=["col1", "col2"], outputCol="cols_vector")
Then we instantiate the transformer:
pair_transformer = MeasurementDifferenceTransformer(inputCol="cols_vector", outputCol="col1_minus_col2")
Finally we transform the data:
pairfeats = pair_assembler.transform(df)
difffeats = pait_transformer.transform(pairfeats)

You don't need to go through all these trouble in order to operate on multiple columns. Here's a better approach using HasInputCols (instead of HasInputCol)
class MeasurementDifferenceTransformer(Transformer, HasInputCols, HasOutputCol):
#keyword_only
def __init__(self, inputCols=None, outputCol=None):
super(MeasurementDifferenceTransformer, self).__init__()
kwargs = self._input_kwargs
self.setParams(**kwargs)
#keyword_only
def setParams(self, inputCols=None, outputCol=None):
kwargs = self._input_kwargs
return self._set(**kwargs)
def _transform(self, dataset):
out_col = self.getOutputCol()
in_col = self.getInputCols()
# Define transformer logic
def f(col1, col2):
return float(col1-col2)
t = FloatType()
return dataset.withColumn(out_col, udf(lambda f, t)(*in_col))

Related

How to feed different pad IDs to a collate function?

I usually use a custom collate_fn and use it as an argument when defining my DataLoader. It usually looks something like:
def collate_fn(batch):
max_len = max([len(b['input_ids']) for b in batch])
input_ids = [b['input_ids'] + ([0] * (max_len - len(b['input_ids'])))]
labels = [b['label'] for b in batch]
return input_ids
As you can see, I'm using 0 for my padding sequence. What I'm wondering is, since language models and their tokenizers use different IDs for padding tokens, is there a way that I can make the collate_fn flexible to take that into account?
I was able to make a workaround by making a Trainer class and making the collate_fn a method. After that I was able to do something like self.pad_token_id = tokenizer.pad_token_id and modify the original collate_fn to use self.pad_token_id rather than a hardcoded value.
I'm still curious if there's any way to do this while keeping collate_fn a top-level function though. For example if there would be any way to pass an argument or something.
<Original>
def collate_fn(batch):
max_len = max([len(b['input_ids']) for b in batch])
input_ids = [b['input_ids'] + ([0] * (max_len - len(b['input_ids']))) for b in batch]
return input_ids
class Trainer():
def __init__(self, tokenizer, ...):
...
def train(self):
train_dataloader = DataLoader(features, collate_fn=collate_fn, ...)
...
<Workaround>
class Trainer():
def __init__(self, tokenizer, ...):
self.pad_token_id = tokenizer.pad_token_id
...
def collate_fn(self, batch):
max_len = max([len(b['input_ids']) for b in batch])
input_ids = [b['input_ids'] + ([self.pad_token_id] * (max_len - len(b['input_ids']))) for b in batch]
return input_ids
def train(self):
train_dataloader = DataLoader(features, collate_fn=self.collate_fn, ...)
...

Does Keras official sample code about Transformer applied in time-series contain Position Embedding part?

The sample code for referring from url:https://keras.io/examples/timeseries/timeseries_transformer_classification/
I could not find out any description about "Position Embedding" content in full page of above url. When I looked through Transformer applied in NLP, I can clearly see the class named "TokenAndPositionEmbedding".
If it does not contain "Position Embedding", how can I apply Position Embedding in time series in sample code?
From what I can tell it does not contain the positional embedding. Something like this should work.
class PositionEmbeddingFixedWeights(Layer):
def __init__(self, sequence_length, vocab_size, output_dim, **kwargs):
super(PositionEmbeddingFixedWeights, self).__init__(**kwargs)
word_embedding_matrix = self.get_position_encoding(vocab_size, output_dim)
position_embedding_matrix = self.get_position_encoding(sequence_length, output_dim)
self.word_embedding_layer = Embedding(
input_dim=vocab_size, output_dim=output_dim,
weights=[word_embedding_matrix],
trainable=False
)
self.position_embedding_layer = Embedding(
input_dim=sequence_length, output_dim=output_dim,
weights=[position_embedding_matrix],
trainable=False
)
def get_position_encoding(self, seq_len, d, n=10000):
P = np.zeros((seq_len, d))
for k in range(seq_len):
for i in np.arange(int(d/2)):
denominator = np.power(n, 2*i/d)
P[k, 2*i] = np.sin(k/denominator)
P[k, 2*i+1] = np.cos(k/denominator)
return P
def call(self, inputs):
position_indices = tf.range(tf.shape(inputs)[-1])
embedded_words = self.word_embedding_layer(inputs)
embedded_indices = self.position_embedding_layer(position_indices)
return embedded_words + embedded_indices
This class originated from https://machinelearningmastery.com/the-transformer-positional-encoding-layer-in-keras-part-2/

ValueError: optimizer got an empty parameter list

I create the following simple linear class:
class Decoder(nn.Module):
def __init__(self, K, h=()):
super().__init__()
h = (K,)+h+(K,)
self.layers = [nn.Linear(h1,h2) for h1,h2 in zip(h, h[1:])]
def forward(self, x):
for layer in self.layers[:-1]:
x = F.relu(layer(x))
return self.layers[-1](x)
However, when I try to put the parameters in a optimizer class I get the error ValueError: optimizer got an empty parameter list.
decoder = Decoder(4)
LR = 1e-3
opt = optim.Adam(decoder.parameters(), lr=LR)
Is there something I'm doing obviously wrong with the class definition?
Since you store your layers in a regular pythonic list inside your Decoder, Pytorch has no way of telling these members of the self.list are actually sub modules. Convert this list into pytorch's nn.ModuleList and your problem will be solved
class Decoder(nn.Module):
def __init__(self, K, h=()):
super().__init__()
h = (K,)+h+(K,)
self.layers = nn.ModuleList(nn.Linear(h1,h2) for h1,h2 in zip(h, h[1:]))

how to use output of sklearn pipeline elements

I have three features:
feature_one -> number of tokens in the given sentence.
feature_two -> number of verbs in the given sentence.
feature_three -> number of tokens - number of verbs in the given sentence.
(feature_one - feature_two)
I have written custom transformers for feature_one and feature_two and want to written custom transformer for feature_three such that I can use result of feature_one and feature_two by running pipeline as:
Pipeline([
#input to feature_one and feature_two is list of sentences.
("feature", FeatureUnion([
("feature_one", feature_one_transformer()),
("feature_two", feature_two_transformer())
])),
("feature_three", feature_three_transformer())
])
feature_one_transformer:
class feature_one_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_tokens_in_sentence_list = list()
for sentence in sentence_list:
number_of_tokens = compute_number_of_tokens
number_of_tokens_in_sentence_lista.append(number_of_tokens)
return pandas.DataFrame(number_of_tokens_in_sentence_list)
feature_two_transformer:
class feature_two_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_verbs_in_sentence_list = list()
for sentence in sentence_list:
number_of_verbs = compute_number_of_verbs_in_sentence
number_of_verbs_in_sentence_lista.append(number_of_verbs)
return pandas.DataFrame(number_of_verbs_in_sentence_list)
Can somebody tell me how should I write custom transformer for feature_three and how to use in pipeline so that I can use result of feature_one and feature_two transformers. Thank you.
It's not clear to me why you would want to make this so complicated. I would just use one transformer that does everything you want. Something like this:
class features_transformer(BaseEstimator, TransformerMixin):
def __init__(self, variable):
self.variable = variable
def fit(self, X):
return self
def transform(self, X):
X['number_of_tokens'] = X[self.variable].apply(lambda cell: compute_number_of_tokens(cell))
X['number_of_verbs'] = X[self.variable].apply(lambda cell: compute_number_of_verbs(cell))
X['tokens_minus_verbs'] = X['number_of_tokens'] - X['number_of_verbs']
return X
new_X = features_transformer('sentences').fit_transform(X)

Serialize a custom transformer using python to be used within a Pyspark ML pipeline

I found the same discussion in comments section of Create a custom Transformer in PySpark ML, but there is no clear answer. There is also an unresolved JIRA corresponding to that: https://issues.apache.org/jira/browse/SPARK-17025.
Given that there is no option provided by Pyspark ML pipeline for saving a custom transformer written in python, what are the other options to get it done? How can I implement the _to_java method in my python class that returns a compatible java object?
As of Spark 2.3.0 there's a much, much better way to do this.
Simply extend DefaultParamsWritable and DefaultParamsReadable and your class will automatically have write and read methods that will save your params and will be used by the PipelineModel serialization system.
The docs were not really clear, and I had to do a bit of source reading to understand this was the way that deserialization worked.
PipelineModel.read instantiates a PipelineModelReader
PipelineModelReader loads metadata and checks if language is 'Python'. If it's not, then the typical JavaMLReader is used (what most of these answers are designed for)
Otherwise, PipelineSharedReadWrite is used, which calls DefaultParamsReader.loadParamsInstance
loadParamsInstance will find class from the saved metadata. It will instantiate that class and call .load(path) on it. You can extend DefaultParamsReader and get the DefaultParamsReader.load method automatically. If you do have specialized deserialization logic you need to implement, I would look at that load method as a starting place.
On the opposite side:
PipelineModel.write will check if all stages are Java (implement JavaMLWritable). If so, the typical JavaMLWriter is used (what most of these answers are designed for)
Otherwise, PipelineWriter is used, which checks that all stages implement MLWritable and calls PipelineSharedReadWrite.saveImpl
PipelineSharedReadWrite.saveImpl will call .write().save(path) on each stage.
You can extend DefaultParamsWriter to get the DefaultParamsWritable.write method that saves metadata for your class and params in the right format. If you have custom serialization logic you need to implement, I would look at that and DefaultParamsWriter as a starting point.
Ok, so finally, you have a pretty simple transformer that extends Params and all your parameters are stored in the typical Params fashion:
from pyspark import keyword_only
from pyspark.ml import Transformer
from pyspark.ml.param.shared import HasOutputCols, Param, Params
from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable
from pyspark.sql.functions import lit # for the dummy _transform
class SetValueTransformer(
Transformer, HasOutputCols, DefaultParamsReadable, DefaultParamsWritable,
):
value = Param(
Params._dummy(),
"value",
"value to fill",
)
#keyword_only
def __init__(self, outputCols=None, value=0.0):
super(SetValueTransformer, self).__init__()
self._setDefault(value=0.0)
kwargs = self._input_kwargs
self._set(**kwargs)
#keyword_only
def setParams(self, outputCols=None, value=0.0):
"""
setParams(self, outputCols=None, value=0.0)
Sets params for this SetValueTransformer.
"""
kwargs = self._input_kwargs
return self._set(**kwargs)
def setValue(self, value):
"""
Sets the value of :py:attr:`value`.
"""
return self._set(value=value)
def getValue(self):
"""
Gets the value of :py:attr:`value` or its default value.
"""
return self.getOrDefault(self.value)
def _transform(self, dataset):
for col in self.getOutputCols():
dataset = dataset.withColumn(col, lit(self.getValue()))
return dataset
Now we can use it:
from pyspark.ml import Pipeline, PipelineModel
svt = SetValueTransformer(outputCols=["a", "b"], value=123.0)
p = Pipeline(stages=[svt])
df = sc.parallelize([(1, None), (2, 1.0), (3, 0.5)]).toDF(["key", "value"])
pm = p.fit(df)
pm.transform(df).show()
pm.write().overwrite().save('/tmp/example_pyspark_pipeline')
pm2 = PipelineModel.load('/tmp/example_pyspark_pipeline')
print('matches?', pm2.stages[0].extractParamMap() == pm.stages[0].extractParamMap())
pm2.transform(df).show()
Result:
+---+-----+-----+-----+
|key|value| a| b|
+---+-----+-----+-----+
| 1| null|123.0|123.0|
| 2| 1.0|123.0|123.0|
| 3| 0.5|123.0|123.0|
+---+-----+-----+-----+
matches? True
+---+-----+-----+-----+
|key|value| a| b|
+---+-----+-----+-----+
| 1| null|123.0|123.0|
| 2| 1.0|123.0|123.0|
| 3| 0.5|123.0|123.0|
+---+-----+-----+-----+
I am not sure this is the best approach, but I too need the ability to save custom Estimators, Transformers and Models that I have created in Pyspark, and also to support their use in the Pipeline API with persistence. Custom Pyspark Estimators, Transformers and Models may be created and used in the Pipeline API but cannot be saved. This poses an issue in production when the model training takes longer than an event prediction cycle.
In general, Pyspark Estimators, Transformers and Models are just wrappers around the Java or Scala equivalents and the Pyspark wrappers just marshal the parameters to and from Java via py4j. Any persisting of the model is then done on the Java side. Because of this current structure, this limits Custom Pyspark Estimators, Transformers and Models to living only in the python world.
In a previous attempt, I was able to save a single Pyspark model by using Pickle/dill serialization. This worked well, but still did not allow saving or loading back such from within the Pipeline API. But, pointed to by another SO post I was directed to the OneVsRest classifier, and inspected the _to_java and _from_java methods. They do all the heavy lifting on the Pyspark side. After looking I thought, if one had a way to save the pickle dump to an already made and supported savable java object, then it should be possible to save a Custom Pyspark Estimator, Transformer and Model with the Pipeline API.
To that end, I found the StopWordsRemover to be the ideal object to hijack because it has an attribute, stopwords, that is a list of strings. The dill.dumps method returns a pickled representation of the object as a string. The plan was to turn the string into a list and then set the stopwords parameter of a StopWordsRemover to this list. Though a list strings, I found that some of the characters would not marshal to the java object. So the characters get converted to integers then the integers to strings. This all works great for saving a single instance, and also when saving within in a Pipeline, because the Pipeline dutifully calls the _to_java method of my python class (we are still on the Pyspark side so this works). But, coming back to Pyspark from java did not in the Pipeline API.
Because I am hiding my python object in a StopWordsRemover instance, the Pipeline, when coming back to Pyspark, does not know anything about my hidden class object, it knows only it has a StopWordsRemover instance. Ideally, it would be great to subclass Pipeline and PipelineModel, but alas this brings us back to trying to serialize a Python object. To combat this, I created a PysparkPipelineWrapper that takes a Pipeline or PipelineModel and just scans the stages, looking for a coded ID in the stopwords list (remember, this is just the pickled bytes of my python object) that tells it to unwraps the list to my instance and stores it back in the stage it came from. Below is code that shows how this all works.
For any Custom Pyspark Estimator, Transformer and Model, just inherit from Identifiable, PysparkReaderWriter, MLReadable, MLWritable. Then when loading a Pipeline and PipelineModel, pass such through PysparkPipelineWrapper.unwrap(pipeline).
This method does not address using the Pyspark code in Java or Scala, but at least we can save and load Custom Pyspark Estimators, Transformers and Models and work with Pipeline API.
import dill
from pyspark.ml import Transformer, Pipeline, PipelineModel
from pyspark.ml.param import Param, Params
from pyspark.ml.util import Identifiable, MLReadable, MLWritable, JavaMLReader, JavaMLWriter
from pyspark.ml.feature import StopWordsRemover
from pyspark.ml.wrapper import JavaParams
from pyspark.context import SparkContext
from pyspark.sql import Row
class PysparkObjId(object):
"""
A class to specify constants used to idenify and setup python
Estimators, Transformers and Models so they can be serialized on there
own and from within a Pipline or PipelineModel.
"""
def __init__(self):
super(PysparkObjId, self).__init__()
#staticmethod
def _getPyObjId():
return '4c1740b00d3c4ff6806a1402321572cb'
#staticmethod
def _getCarrierClass(javaName=False):
return 'org.apache.spark.ml.feature.StopWordsRemover' if javaName else StopWordsRemover
class PysparkPipelineWrapper(object):
"""
A class to facilitate converting the stages of a Pipeline or PipelineModel
that were saved from PysparkReaderWriter.
"""
def __init__(self):
super(PysparkPipelineWrapper, self).__init__()
#staticmethod
def unwrap(pipeline):
if not (isinstance(pipeline, Pipeline) or isinstance(pipeline, PipelineModel)):
raise TypeError("Cannot recognize a pipeline of type %s." % type(pipeline))
stages = pipeline.getStages() if isinstance(pipeline, Pipeline) else pipeline.stages
for i, stage in enumerate(stages):
if (isinstance(stage, Pipeline) or isinstance(stage, PipelineModel)):
stages[i] = PysparkPipelineWrapper.unwrap(stage)
if isinstance(stage, PysparkObjId._getCarrierClass()) and stage.getStopWords()[-1] == PysparkObjId._getPyObjId():
swords = stage.getStopWords()[:-1] # strip the id
lst = [chr(int(d)) for d in swords]
dmp = ''.join(lst)
py_obj = dill.loads(dmp)
stages[i] = py_obj
if isinstance(pipeline, Pipeline):
pipeline.setStages(stages)
else:
pipeline.stages = stages
return pipeline
class PysparkReaderWriter(object):
"""
A mixin class so custom pyspark Estimators, Transformers and Models may
support saving and loading directly or be saved within a Pipline or PipelineModel.
"""
def __init__(self):
super(PysparkReaderWriter, self).__init__()
def write(self):
"""Returns an MLWriter instance for this ML instance."""
return JavaMLWriter(self)
#classmethod
def read(cls):
"""Returns an MLReader instance for our clarrier class."""
return JavaMLReader(PysparkObjId._getCarrierClass())
#classmethod
def load(cls, path):
"""Reads an ML instance from the input path, a shortcut of `read().load(path)`."""
swr_java_obj = cls.read().load(path)
return cls._from_java(swr_java_obj)
#classmethod
def _from_java(cls, java_obj):
"""
Get the dumby the stopwords that are the characters of the dills dump plus our guid
and convert, via dill, back to our python instance.
"""
swords = java_obj.getStopWords()[:-1] # strip the id
lst = [chr(int(d)) for d in swords] # convert from string integer list to bytes
dmp = ''.join(lst)
py_obj = dill.loads(dmp)
return py_obj
def _to_java(self):
"""
Convert this instance to a dill dump, then to a list of strings with the unicode integer values of each character.
Use this list as a set of dumby stopwords and store in a StopWordsRemover instance
:return: Java object equivalent to this instance.
"""
dmp = dill.dumps(self)
pylist = [str(ord(d)) for d in dmp] # convert byes to string integer list
pylist.append(PysparkObjId._getPyObjId()) # add our id so PysparkPipelineWrapper can id us.
sc = SparkContext._active_spark_context
java_class = sc._gateway.jvm.java.lang.String
java_array = sc._gateway.new_array(java_class, len(pylist))
for i in xrange(len(pylist)):
java_array[i] = pylist[i]
_java_obj = JavaParams._new_java_obj(PysparkObjId._getCarrierClass(javaName=True), self.uid)
_java_obj.setStopWords(java_array)
return _java_obj
class HasFake(Params):
def __init__(self):
super(HasFake, self).__init__()
self.fake = Param(self, "fake", "fake param")
def getFake(self):
return self.getOrDefault(self.fake)
class MockTransformer(Transformer, HasFake, Identifiable):
def __init__(self):
super(MockTransformer, self).__init__()
self.dataset_count = 0
def _transform(self, dataset):
self.dataset_count = dataset.count()
return dataset
class MyTransformer(MockTransformer, Identifiable, PysparkReaderWriter, MLReadable, MLWritable):
def __init__(self):
super(MyTransformer, self).__init__()
def make_a_dataframe(sc):
df = sc.parallelize([Row(name='Alice', age=5, height=80), Row(name='Alice', age=5, height=80), Row(name='Alice', age=10, height=80)]).toDF()
return df
def test1():
trA = MyTransformer()
trA.dataset_count = 999
print trA.dataset_count
trA.save('test.trans')
trB = MyTransformer.load('test.trans')
print trB.dataset_count
def test2():
trA = MyTransformer()
pipeA = Pipeline(stages=[trA])
print type(pipeA)
pipeA.save('testA.pipe')
pipeAA = PysparkPipelineWrapper.unwrap(Pipeline.load('testA.pipe'))
stagesAA = pipeAA.getStages()
trAA = stagesAA[0]
print trAA.dataset_count
def test3():
dfA = make_a_dataframe(sc)
trA = MyTransformer()
pipeA = Pipeline(stages=[trA]).fit(dfA)
print type(pipeA)
pipeA.save('testB.pipe')
pipeAA = PysparkPipelineWrapper.unwrap(PipelineModel.load('testB.pipe'))
stagesAA = pipeAA.stages
trAA = stagesAA[0]
print trAA.dataset_count
dfB = pipeAA.transform(dfA)
dfB.show()
I couldn't get #dmbaker's ingenious solution to work using Python 2 on Spark 2.2.0; I kept getting pickling errors. After several blind alleys I got a working solution by modifying his (her?) idea to write and read the parameter values as strings into StopWordsRemover's stop words directly.
Here's the base class you need if you want to save and load your own estimators or transformers:
from pyspark import SparkContext
from pyspark.ml.feature import StopWordsRemover
from pyspark.ml.util import Identifiable, MLWritable, JavaMLWriter, MLReadable, JavaMLReader
from pyspark.ml.wrapper import JavaWrapper, JavaParams
class PysparkReaderWriter(Identifiable, MLReadable, MLWritable):
"""
A base class for custom pyspark Estimators and Models to support saving and loading directly
or within a Pipeline or PipelineModel.
"""
def __init__(self):
super(PysparkReaderWriter, self).__init__()
#staticmethod
def _getPyObjIdPrefix():
return "_ThisIsReallyA_"
#classmethod
def _getPyObjId(cls):
return PysparkReaderWriter._getPyObjIdPrefix() + cls.__name__
def getParamsAsListOfStrings(self):
raise NotImplementedError("PysparkReaderWriter.getParamsAsListOfStrings() not implemented for instance: %r" % self)
def write(self):
"""Returns an MLWriter instance for this ML instance."""
return JavaMLWriter(self)
def _to_java(self):
# Convert all our parameters to strings:
paramValuesAsStrings = self.getParamsAsListOfStrings()
# Append our own type-specific id so PysparkPipelineLoader can detect this algorithm when unwrapping us.
paramValuesAsStrings.append(self._getPyObjId())
# Convert the parameter values to a Java array:
sc = SparkContext._active_spark_context
java_array = JavaWrapper._new_java_array(paramValuesAsStrings, sc._gateway.jvm.java.lang.String)
# Create a Java (Scala) StopWordsRemover and give it the parameters as its stop words.
_java_obj = JavaParams._new_java_obj("org.apache.spark.ml.feature.StopWordsRemover", self.uid)
_java_obj.setStopWords(java_array)
return _java_obj
#classmethod
def _from_java(cls, java_obj):
# Get the stop words, ignoring the id at the end:
stopWords = java_obj.getStopWords()[:-1]
return cls.createAndInitialisePyObj(stopWords)
#classmethod
def createAndInitialisePyObj(cls, paramsAsListOfStrings):
raise NotImplementedError("PysparkReaderWriter.createAndInitialisePyObj() not implemented for type: %r" % cls)
#classmethod
def read(cls):
"""Returns an MLReader instance for our clarrier class."""
return JavaMLReader(StopWordsRemover)
#classmethod
def load(cls, path):
"""Reads an ML instance from the input path, a shortcut of `read().load(path)`."""
swr_java_obj = cls.read().load(path)
return cls._from_java(swr_java_obj)
Your own pyspark algorithm must then inherit from PysparkReaderWriter and override the getParamsAsListOfStrings() method which saves your parameters to a list of strings. Your algorithm must also override the createAndInitialisePyObj() method for converting a list of strings back into your parameters. Behind the scenes the parameters are converted to and from the stop words used by StopWordsRemover.
Example estimator with 3 parameters of different type:
from pyspark.ml.param.shared import Param, Params, TypeConverters
from pyspark.ml.base import Estimator
class MyEstimator(Estimator, PysparkReaderWriter):
def __init__(self):
super(MyEstimator, self).__init__()
# 3 sample parameters, deliberately of different types:
stringParam = Param(Params._dummy(), "stringParam", "A dummy string parameter", typeConverter=TypeConverters.toString)
def setStringParam(self, value):
return self._set(stringParam=value)
def getStringParam(self):
return self.getOrDefault(self.stringParam)
listOfStringsParam = Param(Params._dummy(), "listOfStringsParam", "A dummy list of strings.", typeConverter=TypeConverters.toListString)
def setListOfStringsParam(self, value):
return self._set(listOfStringsParam=value)
def getListOfStringsParam(self):
return self.getOrDefault(self.listOfStringsParam)
intParam = Param(Params._dummy(), "intParam", "A dummy int parameter.", typeConverter=TypeConverters.toInt)
def setIntParam(self, value):
return self._set(intParam=value)
def getIntParam(self):
return self.getOrDefault(self.intParam)
def _fit(self, dataset):
model = MyModel()
# Just some changes to verify we can modify the model (and also it's something we can expect to see when restoring it later):
model.setAnotherStringParam(self.getStringParam() + " World!")
model.setAnotherListOfStringsParam(self.getListOfStringsParam() + ["E", "F"])
model.setAnotherIntParam(self.getIntParam() + 10)
return model
def getParamsAsListOfStrings(self):
paramValuesAsStrings = []
paramValuesAsStrings.append(self.getStringParam()) # Parameter is already a string
paramValuesAsStrings.append(','.join(self.getListOfStringsParam())) # ...convert from a list of strings
paramValuesAsStrings.append(str(self.getIntParam())) # ...convert from an int
return paramValuesAsStrings
#classmethod
def createAndInitialisePyObj(cls, paramsAsListOfStrings):
# Convert back into our parameters. Make sure you do this in the same order you saved them!
py_obj = cls()
py_obj.setStringParam(paramsAsListOfStrings[0])
py_obj.setListOfStringsParam(paramsAsListOfStrings[1].split(","))
py_obj.setIntParam(int(paramsAsListOfStrings[2]))
return py_obj
Example Model (also a Transformer) which has 3 different parameters:
from pyspark.ml.base import Model
class MyModel(Model, PysparkReaderWriter):
def __init__(self):
super(MyModel, self).__init__()
# 3 sample parameters, deliberately of different types:
anotherStringParam = Param(Params._dummy(), "anotherStringParam", "A dummy string parameter", typeConverter=TypeConverters.toString)
def setAnotherStringParam(self, value):
return self._set(anotherStringParam=value)
def getAnotherStringParam(self):
return self.getOrDefault(self.anotherStringParam)
anotherListOfStringsParam = Param(Params._dummy(), "anotherListOfStringsParam", "A dummy list of strings.", typeConverter=TypeConverters.toListString)
def setAnotherListOfStringsParam(self, value):
return self._set(anotherListOfStringsParam=value)
def getAnotherListOfStringsParam(self):
return self.getOrDefault(self.anotherListOfStringsParam)
anotherIntParam = Param(Params._dummy(), "anotherIntParam", "A dummy int parameter.", typeConverter=TypeConverters.toInt)
def setAnotherIntParam(self, value):
return self._set(anotherIntParam=value)
def getAnotherIntParam(self):
return self.getOrDefault(self.anotherIntParam)
def _transform(self, dataset):
# Dummy transform code:
return dataset.withColumn('age2', dataset.age + self.getAnotherIntParam())
def getParamsAsListOfStrings(self):
paramValuesAsStrings = []
paramValuesAsStrings.append(self.getAnotherStringParam()) # Parameter is already a string
paramValuesAsStrings.append(','.join(self.getAnotherListOfStringsParam())) # ...convert from a list of strings
paramValuesAsStrings.append(str(self.getAnotherIntParam())) # ...convert from an int
return paramValuesAsStrings
#classmethod
def createAndInitialisePyObj(cls, paramsAsListOfStrings):
# Convert back into our parameters. Make sure you do this in the same order you saved them!
py_obj = cls()
py_obj.setAnotherStringParam(paramsAsListOfStrings[0])
py_obj.setAnotherListOfStringsParam(paramsAsListOfStrings[1].split(","))
py_obj.setAnotherIntParam(int(paramsAsListOfStrings[2]))
return py_obj
Below is a sample test case showing how you can save and load your model. It's similar for the estimator so I omit that for brevity.
def createAModel():
m = MyModel()
m.setAnotherStringParam("Boo!")
m.setAnotherListOfStringsParam(["P", "Q", "R"])
m.setAnotherIntParam(77)
return m
def testSaveLoadModel():
modA = createAModel()
print(modA.explainParams())
savePath = "/whatever/path/you/want"
#modA.save(savePath) # Can't overwrite, so...
modA.write().overwrite().save(savePath)
modB = MyModel.load(savePath)
print(modB.explainParams())
testSaveLoadModel()
Output:
anotherIntParam: A dummy int parameter. (current: 77)
anotherListOfStringsParam: A dummy list of strings. (current: ['P', 'Q', 'R'])
anotherStringParam: A dummy string parameter (current: Boo!)
anotherIntParam: A dummy int parameter. (current: 77)
anotherListOfStringsParam: A dummy list of strings. (current: [u'P', u'Q', u'R'])
anotherStringParam: A dummy string parameter (current: Boo!)
Notice how the parameters have come back in as unicode strings. This may or may not make a difference to your underlying algorithm that you implement in _transform() (or _fit() for the estimator). So be aware of this.
Finally, because the Scala algorithm behind the scenes is really a StopWordsRemover, you need to unwrap it back into your own class when loading the Pipeline or PipelineModel from disk. Here's the utility class that does this unwrapping:
from pyspark.ml import Pipeline, PipelineModel
from pyspark.ml.feature import StopWordsRemover
class PysparkPipelineLoader(object):
"""
A class to facilitate converting the stages of a Pipeline or PipelineModel
that were saved from PysparkReaderWriter.
"""
def __init__(self):
super(PysparkPipelineLoader, self).__init__()
#staticmethod
def unwrap(thingToUnwrap, customClassList):
if not (isinstance(thingToUnwrap, Pipeline) or isinstance(thingToUnwrap, PipelineModel)):
raise TypeError("Cannot recognize an object of type %s." % type(thingToUnwrap))
stages = thingToUnwrap.getStages() if isinstance(thingToUnwrap, Pipeline) else thingToUnwrap.stages
for i, stage in enumerate(stages):
if (isinstance(stage, Pipeline) or isinstance(stage, PipelineModel)):
stages[i] = PysparkPipelineLoader.unwrap(stage)
if isinstance(stage, StopWordsRemover) and stage.getStopWords()[-1].startswith(PysparkReaderWriter._getPyObjIdPrefix()):
lastWord = stage.getStopWords()[-1]
className = lastWord[len(PysparkReaderWriter._getPyObjIdPrefix()):]
stopWords = stage.getStopWords()[:-1] # Strip the id
# Create and initialise the appropriate class:
py_obj = None
for clazz in customClassList:
if clazz.__name__ == className:
py_obj = clazz.createAndInitialisePyObj(stopWords)
if py_obj is None:
raise TypeError("I don't know how to create an instance of type: %s" % className)
stages[i] = py_obj
if isinstance(thingToUnwrap, Pipeline):
thingToUnwrap.setStages(stages)
else:
# PipelineModel
thingToUnwrap.stages = stages
return thingToUnwrap
Test for saving and loading a pipeline:
def testSaveAndLoadUnfittedPipeline():
estA = createAnEstimator()
#print(estA.explainParams())
pipelineA = Pipeline(stages=[estA])
savePath = "/whatever/path/you/want"
#pipelineA.save(savePath) # Can't overwrite, so...
pipelineA.write().overwrite().save(savePath)
pipelineReloaded = PysparkPipelineLoader.unwrap(Pipeline.load(savePath), [MyEstimator])
estB = pipelineReloaded.getStages()[0]
print(estB.explainParams())
testSaveAndLoadUnfittedPipeline()
Output:
intParam: A dummy int parameter. (current: 42)
listOfStringsParam: A dummy list of strings. (current: [u'A', u'B', u'C', u'D'])
stringParam: A dummy string parameter (current: Hello)
Test for saving and loading a pipeline model:
from pyspark.sql import Row
def make_a_dataframe(sc):
df = sc.parallelize([Row(name='Alice', age=5, height=80), Row(name='Bob', age=7, height=85), Row(name='Chris', age=10, height=90)]).toDF()
return df
def testSaveAndLoadPipelineModel():
dfA = make_a_dataframe(sc)
estA = createAnEstimator()
#print(estA.explainParams())
pipelineModelA = Pipeline(stages=[estA]).fit(dfA)
savePath = "/whatever/path/you/want"
#pipelineModelA.save(savePath) # Can't overwrite, so...
pipelineModelA.write().overwrite().save(savePath)
pipelineModelReloaded = PysparkPipelineLoader.unwrap(PipelineModel.load(savePath), [MyModel])
modB = pipelineModelReloaded.stages[0]
print(modB.explainParams())
dfB = pipelineModelReloaded.transform(dfA)
dfB.show()
testSaveAndLoadPipelineModel()
Output:
anotherIntParam: A dummy int parameter. (current: 52)
anotherListOfStringsParam: A dummy list of strings. (current: [u'A', u'B', u'C', u'D', u'E', u'F'])
anotherStringParam: A dummy string parameter (current: Hello World!)
+---+------+-----+----+
|age|height| name|age2|
+---+------+-----+----+
| 5| 80|Alice| 57|
| 7| 85| Bob| 59|
| 10| 90|Chris| 62|
+---+------+-----+----+
When unwrapping a pipeline or pipeline model you have to pass in a list of the classes that correspond to your own pyspark algorithms that are masquerading as StopWordsRemover objects in the saved pipeline or pipeline model. The last stop word in your saved object is used to identify your own class's name and then createAndInitialisePyObj() is called to create an instance of your class and initialise its parameters with the remaining stop words.
Various refinements could be made. But hopefully this will enable you to save and load custom estimators and transformers, both inside and outside pipelines, until SPARK-17025 is resolved and available to you.
Similar to the working answer by #dmbaker, I wrapped my custom transformer called Aggregator inside of a built-in Spark transformer, in this example, Binarizer, though I'm sure you can inherit from other transformers, too. That allowed my custom transformer to inherit the methods necessary for serialization.
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler, Binarizer
from pyspark.ml.regression import LinearRegression
class Aggregator(Binarizer):
"""A huge hack to allow serialization of custom transformer."""
def transform(self, input_df):
agg_df = input_df\
.groupBy('channel_id')\
.agg({
'foo': 'avg',
'bar': 'avg',
})\
.withColumnRenamed('avg(foo)', 'avg_foo')\
.withColumnRenamed('avg(bar)', 'avg_bar')
return agg_df
# Create pipeline stages.
aggregator = Aggregator()
vector_assembler = VectorAssembler(...)
linear_regression = LinearRegression()
# Create pipeline.
pipeline = Pipeline(stages=[aggregator, vector_assembler, linear_regression])
# Train.
pipeline_model = pipeline.fit(input_df)
# Save model file to S3.
pipeline_model.save('s3n://example')
The #dmbaker solution didn't work for me. I believe that is because the python version (2.x versus 3.x). I made some updates on his solution and now it works on Python 3. My setup is listed below:
python: 3.6.3
spark: 2.2.1
dill: 0.2.7.1
class PysparkObjId(object):
"""
A class to specify constants used to idenify and setup python
Estimators, Transformers and Models so they can be serialized on there
own and from within a Pipline or PipelineModel.
"""
def __init__(self):
super(PysparkObjId, self).__init__()
#staticmethod
def _getPyObjId():
return '4c1740b00d3c4ff6806a1402321572cb'
#staticmethod
def _getCarrierClass(javaName=False):
return 'org.apache.spark.ml.feature.StopWordsRemover' if javaName else StopWordsRemover
class PysparkPipelineWrapper(object):
"""
A class to facilitate converting the stages of a Pipeline or PipelineModel
that were saved from PysparkReaderWriter.
"""
def __init__(self):
super(PysparkPipelineWrapper, self).__init__()
#staticmethod
def unwrap(pipeline):
if not (isinstance(pipeline, Pipeline) or isinstance(pipeline, PipelineModel)):
raise TypeError("Cannot recognize a pipeline of type %s." % type(pipeline))
stages = pipeline.getStages() if isinstance(pipeline, Pipeline) else pipeline.stages
for i, stage in enumerate(stages):
if (isinstance(stage, Pipeline) or isinstance(stage, PipelineModel)):
stages[i] = PysparkPipelineWrapper.unwrap(stage)
if isinstance(stage, PysparkObjId._getCarrierClass()) and stage.getStopWords()[-1] == PysparkObjId._getPyObjId():
swords = stage.getStopWords()[:-1] # strip the id
# convert stop words to int
swords = [int(d) for d in swords]
# get the byte value of all ints
lst = [x.to_bytes(length=1, byteorder='big') for x in
swords] # convert from string integer list to bytes
# return the first byte and concatenates all the others
dmp = lst[0]
for byte_counter in range(1, len(lst)):
dmp = dmp + lst[byte_counter]
py_obj = dill.loads(dmp)
stages[i] = py_obj
if isinstance(pipeline, Pipeline):
pipeline.setStages(stages)
else:
pipeline.stages = stages
return pipeline
class PysparkReaderWriter(object):
"""
A mixin class so custom pyspark Estimators, Transformers and Models may
support saving and loading directly or be saved within a Pipline or PipelineModel.
"""
def __init__(self):
super(PysparkReaderWriter, self).__init__()
def write(self):
"""Returns an MLWriter instance for this ML instance."""
return JavaMLWriter(self)
#classmethod
def read(cls):
"""Returns an MLReader instance for our clarrier class."""
return JavaMLReader(PysparkObjId._getCarrierClass())
#classmethod
def load(cls, path):
"""Reads an ML instance from the input path, a shortcut of `read().load(path)`."""
swr_java_obj = cls.read().load(path)
return cls._from_java(swr_java_obj)
#classmethod
def _from_java(cls, java_obj):
"""
Get the dumby the stopwords that are the characters of the dills dump plus our guid
and convert, via dill, back to our python instance.
"""
swords = java_obj.getStopWords()[:-1] # strip the id
lst = [x.to_bytes(length=1, byteorder='big') for x in swords] # convert from string integer list to bytes
dmp = lst[0]
for i in range(1, len(lst)):
dmp = dmp + lst[i]
py_obj = dill.loads(dmp)
return py_obj
def _to_java(self):
"""
Convert this instance to a dill dump, then to a list of strings with the unicode integer values of each character.
Use this list as a set of dumby stopwords and store in a StopWordsRemover instance
:return: Java object equivalent to this instance.
"""
dmp = dill.dumps(self)
pylist = [str(int(d)) for d in dmp] # convert bytes to string integer list
pylist.append(PysparkObjId._getPyObjId()) # add our id so PysparkPipelineWrapper can id us.
sc = SparkContext._active_spark_context
java_class = sc._gateway.jvm.java.lang.String
java_array = sc._gateway.new_array(java_class, len(pylist))
for i in range(len(pylist)):
java_array[i] = pylist[i]
_java_obj = JavaParams._new_java_obj(PysparkObjId._getCarrierClass(javaName=True), self.uid)
_java_obj.setStopWords(java_array)
return _java_obj
class HasFake(Params):
def __init__(self):
super(HasFake, self).__init__()
self.fake = Param(self, "fake", "fake param")
def getFake(self):
return self.getOrDefault(self.fake)
class CleanText(Transformer, HasInputCol, HasOutputCol, Identifiable, PysparkReaderWriter, MLReadable, MLWritable):
#keyword_only
def __init__(self, inputCol=None, outputCol=None):
super(CleanText, self).__init__()
kwargs = self._input_kwargs
self.setParams(**kwargs)
I wrote some base classes to make this easier. Basically I abstract all the complication of the code and initialisation into some base classes that expose a much simpler API to build custom ones. This includes taking care of the serialisation/deserialisation problem and saving and loading SparkML objects. Then you can use concentrate in the __init__ and transform/fit functions. You can find a full explanation with examples in here.

Resources