Can I use a standalone Signature as a signature in Perl 6? - signature

I was playing around with a Perl 6 implementation of a command-line program that takes several switches. The signature to MAIN was quite involved and a bit messy. I wondered if there was a way to define the signature somewhere else and tell the subroutine what to use:
# possibly big and messy signature
my $sig;
BEGIN { $sig = :( Int $n, Int $m ) };
multi MAIN ( $sig ) {
put "Got $n and $m";
}
MAIN doesn't see the variables in the signature even though the signature is set before MAIN compiles:
===SORRY!=== Error while compiling /Users/brian/Desktop/signature.p6
Variable '$n' is not declared
at /Users/brian/Desktop/signature.p6:7
I figured this sort of thing might be handy for generating methods after compile time and selecting signatures based on various factors.

Short answer: No
Long answer: Still no. And if you could, you'd run into all kinds of trouble, because there's only one variable $n in your example. If you use the signature multiple times (or use it only once, and recurse into the subroutine that you attached it to), each signature binding would overwrite the previous value in that variable, causing some spooky action at a distance. There simply isn't a mechanism to cloning the variables involved in a free-floating signature.
Workarounds like using a match-all signature in the actual routine, and then use that to bind the capture to the signature suffer from this same flaw, and are thus IMHO not worth the trouble.
Maybe in the far future, some very advanced Macro feature might allow you to transplant signatures, but I don't think that part of macro development is even on our roadmap right now.
Instead of reusing bare signatures, you should reuse (possibly anonymous) routines with a signature attached, and install them with the name you want, for example
sub f(Int $n, Int $m) {
# do something sensible here with $n and $m
}
constant &MAIN = &f;
# reuse &f for more

Related

Using a Capture like a Slurpy

I've been reading about Captures and this paragraph intrigued me:
Inside a Signature, a Capture may be created by prefixing a sigilless
parameter with a vertical bar |. This packs the remainder of the
argument list into that parameter.
This sounds a lot like a **# (non flattening) slurpy, so this concocted this test code:
my $limit=1_000_000;
my #a=1 xx 10000;
my #b=-1 xx 10000;
sub test1(|c){
1;
};
sub test2(**#c){
1;
};
{
for ^$limit {
test1(#b,#a);
}
say now - ENTER now;
}
{
for ^$limit {
test2(#b,#a);
}
say now - ENTER now;
}
A sample run gives durations of each test block:
0.82560328
2.6650674
The Capture certainly seems to have the performance advantage. Is there a down side to using a Capture as a slurpy in this fashion? Have I over simplified the comparison?
A Capture has two slots, holding a VM-level array (positional arguments) and hash (named arguments). It is quite cheaply constructed, and - since |c style arguments are quite common in various bits of the internals - has been well optimized. Since a capture parameter slurps up both positional and named arguments, any named arguments will be silently ignored. That's probably not much of an issue for methods, where unrequired named arguments will be silently placed into %_ anyway, but might be a consideration if using this construct on a sub, since it's not a pure optimization: it changes behavior.
The **#c case allocates an Array, and then allocates a Scalar container for each of the passed values, placing them into the Scalar containers and those Scalar containers into the Array. That's a reasonable amount of extra work.
There's another case not considered here, which is this one:
sub test3(**#c is raw){
1;
}
That places a List in #c, and sets its elements to refer directly to the things that were passed. This is a bit cheaper than the case without is raw. In theory, it could probably perform as well as - if not better than - a capture parameter like |c; it probably just needs somebody working on the compiler to have a dig into why it doesn't yet.
In summary, if not caring about enforcing itemization and/or having a mutable Array of incoming arguments, then adding is raw is probably a better optimization bet than picking a capture parameter: the argument processing semantics are closer, it's already a bit faster, will allow for more natural code, and has future potential to be every bit as fast as, if not faster, than |c.

Accessing a routine's Capture from within

What's the syntax for accessing a subroutine Capture once it's called? self only works for objects, and &?ROUTINE refers to the static routine, not its state once called. So first, is it possible to access the routine's Capture from inside? If so, what's the syntax for accessing it? I've looked at the related Synopse but I can't find a way, if there's one.
There's no way to do exactly what you're asking for. While conceptually arguments are passed by forming a Capture object holding them, which is then unpacked by a signature, for most calls no Capture ever really exists. With every operator in Perl 6 being a multi-dispatch subroutine call, the performance of calling is important, and the language design is such that there's plenty of room for implementations to cheat in order to achieve acceptable performance.
It is possible to explicitly ask for a Capture, however:
sub foo(|c ($a, $b)) { say c.perl; }
foo(1, 2);
This will capture the arguments into c and then unpack them also into $a and $b, enforcing that inner signature.
One might realize that things like callsame do indeed find a way to access the arguments to pass them on, even though no Capture appears in the signature. Their need to do so causes the compiler to opt any routine containing a callsame out of various optimizations, which would otherwise discard information needed to discover the arguments. This isn't ideal, and it's probable it will change in the future - most likely by finding a way to sneak a |SECRET-CAPTURE into the signature or similar.

Linear types in hacklang: Statically forcing an order of function calls

So Hacklang is out with a new, fancy type system, where a nullable variable has to be checked before it can be used. What I wonder is, can you achieve something like linear types, statically forcing an order of function calls, the common example being open a file before reading it? In pseudo-code:
$file_handler = get_file_handler("myfile");
$file_handler->open();
$string = $file_handler->read();
Now, $file_handler->read() without open() would rather than throwing a runtime exception, just not compile:
$file_handler = get_file_handler("myfile");
$string = $file_handler->read(); /* Won't compile, must run open() first */
Doable?
(OK, maybe bad example for PHP/Hacklang, since it is not this lowlevel, but you get the idea.)
Hack does not currently have any native support for linear types. For the particular case you're asking about, an opaque type alias might be useful in a wrapper class: (danger, code typed directly into browser, may have minor errors but should illustrate idea)
<?hh
newtype closedfile = resource;
newtype openfile = resource;
function get_file_handler(string $filename): closedfile {
return some_wrapped_function($filename);
}
function open_file_handler(closedfile $file): openfile {
$file->open();
return $file;
}
function read(openfile $file): string {
return $file->read();
}
Depending on your application, doing this may not be possible or even a good idea, but it's the closest to what we have right now.
That said, if you're designing the API as opposed to using something existing, it might be a good idea to just design it such that there isn't such a thing as a not-yet-opened file, eliminating this sort of error from the start without any type system acrobatics necessary. (Basically, in my opinion at least, this is an API design problem, not a type system problem! Even if you could use the type system to make invalid code an error statically, the fact that the consumer of the API could even write that code and think it's potentially meaningful is a deficiency in the API.)

Why do a lot of programming languages put the type *after* the variable name?

I just came across this question in the Go FAQ, and it reminded me of something that's been bugging me for a while. Unfortunately, I don't really see what the answer is getting at.
It seems like almost every non C-like language puts the type after the variable name, like so:
var : int
Just out of sheer curiosity, why is this? Are there advantages to choosing one or the other?
There is a parsing issue, as Keith Randall says, but it isn't what he describes. The "not knowing whether it is a declaration or an expression" simply doesn't matter - you don't care whether it's an expression or a declaration until you've parsed the whole thing anyway, at which point the ambiguity is resolved.
Using a context-free parser, it doesn't matter in the slightest whether the type comes before or after the variable name. What matters is that you don't need to look up user-defined type names to understand the type specification - you don't need to have understood everything that came before in order to understand the current token.
Pascal syntax is context-free - if not completely, at least WRT this issue. The fact that the variable name comes first is less important than details such as the colon separator and the syntax of type descriptions.
C syntax is context-sensitive. In order for the parser to determine where a type description ends and which token is the variable name, it needs to have already interpreted everything that came before so that it can determine whether a given identifier token is the variable name or just another token contributing to the type description.
Because C syntax is context-sensitive, it very difficult (if not impossible) to parse using traditional parser-generator tools such as yacc/bison, whereas Pascal syntax is easy to parse using the same tools. That said, there are parser generators now that can cope with C and even C++ syntax. Although it's not properly documented or in a 1.? release etc, my personal favorite is Kelbt, which uses backtracking LR and supports semantic "undo" - basically undoing additions to the symbol table when speculative parses turn out to be wrong.
In practice, C and C++ parsers are usually hand-written, mixing recursive descent and precedence parsing. I assume the same applies to Java and C#.
Incidentally, similar issues with context sensitivity in C++ parsing have created a lot of nasties. The "Alternative Function Syntax" for C++0x is working around a similar issue by moving a type specification to the end and placing it after a separator - very much like the Pascal colon for function return types. It doesn't get rid of the context sensitivity, but adopting that Pascal-like convention does make it a bit more manageable.
the 'most other' languages you speak of are those that are more declarative. They aim to allow you to program more along the lines you think in (assuming you aren't boxed into imperative thinking).
type last reads as 'create a variable called NAME of type TYPE'
this is the opposite of course to saying 'create a TYPE called NAME', but when you think about it, what the value is for is more important than the type, the type is merely a programmatic constraint on the data
If the name of the variable starts at column 0, it's easier to find the name of the variable.
Compare
QHash<QString, QPair<int, QString> > hash;
and
hash : QHash<QString, QPair<int, QString> >;
Now imagine how much more readable your typical C++ header could be.
In formal language theory and type theory, it's almost always written as var: type. For instance, in the typed lambda calculus you'll see proofs containing statements such as:
x : A y : B
-------------
\x.y : A->B
I don't think it really matters, but I think there are two justifications: one is that "x : A" is read "x is of type A", the other is that a type is like a set (e.g. int is the set of integers), and the notation is related to "x ε A".
Some of this stuff pre-dates the modern languages you're thinking of.
An increasing trend is to not state the type at all, or to optionally state the type. This could be a dynamically typed langauge where there really is no type on the variable, or it could be a statically typed language which infers the type from the context.
If the type is sometimes given and sometimes inferred, then it's easier to read if the optional bit comes afterwards.
There are also trends related to whether a language regards itself as coming from the C school or the functional school or whatever, but these are a waste of time. The languages which improve on their predecessors and are worth learning are the ones that are willing to accept input from all different schools based on merit, not be picky about a feature's heritage.
"Those who cannot remember the past are condemned to repeat it."
Putting the type before the variable started innocuously enough with Fortran and Algol, but it got really ugly in C, where some type modifiers are applied before the variable, others after. That's why in C you have such beauties as
int (*p)[10];
or
void (*signal(int x, void (*f)(int)))(int)
together with a utility (cdecl) whose purpose is to decrypt such gibberish.
In Pascal, the type comes after the variable, so the first examples becomes
p: pointer to array[10] of int
Contrast with
q: array[10] of pointer to int
which, in C, is
int *q[10]
In C, you need parentheses to distinguish this from int (*p)[10]. Parentheses are not required in Pascal, where only the order matters.
The signal function would be
signal: function(x: int, f: function(int) to void) to (function(int) to void)
Still a mouthful, but at least within the realm of human comprehension.
In fairness, the problem isn't that C put the types before the name, but that it perversely insists on putting bits and pieces before, and others after, the name.
But if you try to put everything before the name, the order is still unintuitive:
int [10] a // an int, ahem, ten of them, called a
int [10]* a // an int, no wait, ten, actually a pointer thereto, called a
So, the answer is: A sensibly designed programming language puts the variables before the types because the result is more readable for humans.
I'm not sure, but I think it's got to do with the "name vs. noun" concept.
Essentially, if you put the type first (such as "int varname"), you're declaring an "integer named 'varname'"; that is, you're giving an instance of a type a name. However, if you put the name first, and then the type (such as "varname : int"), you're saying "this is 'varname'; it's an integer". In the first case, you're giving an instance of something a name; in the second, you're defining a noun and stating that it's an instance of something.
It's a bit like if you were defining a table as a piece of furniture; saying "this is furniture and I call it 'table'" (type first) is different from saying "a table is a kind of furniture" (type last).
It's just how the language was designed. Visual Basic has always been this way.
Most (if not all) curly brace languages put the type first. This is more intuitive to me, as the same position also specifies the return type of a method. So the inputs go into the parenthesis, and the output goes out the back of the method name.
I always thought the way C does it was slightly peculiar: instead of constructing types, the user has to declare them implicitly. It's not just before/after the variable name; in general, you may need to embed the variable name among the type attributes (or, in some usage, to embed an empty space where the name would be if you were actually declaring one).
As a weak form of pattern-matching, it is intelligable to some extent, but it doesn't seem to provide any particular advantages, either. And, trying to write (or read) a function pointer type can easily take you beyond the point of ready intelligability. So overall this aspect of C is a disadvantage, and I'm happy to see that Go has left it behind.
Putting the type first helps in parsing. For instance, in C, if you declared variables like
x int;
When you parse just the x, then you don't know whether x is a declaration or an expression. In contrast, with
int x;
When you parse the int, you know you're in a declaration (types always start a declaration of some sort).
Given progress in parsing languages, this slight help isn't terribly useful nowadays.
Fortran puts the type first:
REAL*4 I,J,K
INTEGER*4 A,B,C
And yes, there's a (very feeble) joke there for those familiar with Fortran.
There is room to argue that this is easier than C, which puts the type information around the name when the type is complex enough (pointers to functions, for example).
What about dynamically (cheers #wcoenen) typed languages? You just use the variable.

Why is the 'if' statement considered evil?

I just came from Simple Design and Testing Conference. In one of the session we were talking about evil keywords in programming languages. Corey Haines, who proposed the subject, was convinced that if statement is absolute evil. His alternative was to create functions with predicates. Can you please explain to me why if is evil.
I understand that you can write very ugly code abusing if. But I don't believe that it's that bad.
The if statement is rarely considered as "evil" as goto or mutable global variables -- and even the latter are actually not universally and absolutely evil. I would suggest taking the claim as a bit hyperbolic.
It also largely depends on your programming language and environment. In languages which support pattern matching, you will have great tools for replacing if at your disposal. But if you're programming a low-level microcontroller in C, replacing ifs with function pointers will be a step in the wrong direction. So, I will mostly consider replacing ifs in OOP programming, because in functional languages, if is not idiomatic anyway, while in purely procedural languages you don't have many other options to begin with.
Nevertheless, conditional clauses sometimes result in code which is harder to manage. This does not only include the if statement, but even more commonly the switch statement, which usually includes more branches than a corresponding if would.
There are cases where it's perfectly reasonable to use an if
When you are writing utility methods, extensions or specific library functions, it's likely that you won't be able to avoid ifs (and you shouldn't). There isn't a better way to code this little function, nor make it more self-documented than it is:
// this is a good "if" use-case
int Min(int a, int b)
{
if (a < b)
return a;
else
return b;
}
// or, if you prefer the ternary operator
int Min(int a, int b)
{
return (a < b) ? a : b;
}
Branching over a "type code" is a code smell
On the other hand, if you encounter code which tests for some sort of a type code, or tests if a variable is of a certain type, then this is most likely a good candidate for refactoring, namely replacing the conditional with polymorphism.
The reason for this is that by allowing your callers to branch on a certain type code, you are creating a possibility to end up with numerous checks scattered all over your code, making extensions and maintenance much more complex. Polymorphism on the other hand allows you to bring this branching decision as closer to the root of your program as possible.
Consider:
// this is called branching on a "type code",
// and screams for refactoring
void RunVehicle(Vehicle vehicle)
{
// how the hell do I even test this?
if (vehicle.Type == CAR)
Drive(vehicle);
else if (vehicle.Type == PLANE)
Fly(vehicle);
else
Sail(vehicle);
}
By placing common but type-specific (i.e. class-specific) functionality into separate classes and exposing it through a virtual method (or an interface), you allow the internal parts of your program to delegate this decision to someone higher in the call hierarchy (potentially at a single place in code), allowing much easier testing (mocking), extensibility and maintenance:
// adding a new vehicle is gonna be a piece of cake
interface IVehicle
{
void Run();
}
// your method now doesn't care about which vehicle
// it got as a parameter
void RunVehicle(IVehicle vehicle)
{
vehicle.Run();
}
And you can now easily test if your RunVehicle method works as it should:
// you can now create test (mock) implementations
// since you're passing it as an interface
var mock = new Mock<IVehicle>();
// run the client method
something.RunVehicle(mock.Object);
// check if Run() was invoked
mock.Verify(m => m.Run(), Times.Once());
Patterns which only differ in their if conditions can be reused
Regarding the argument about replacing if with a "predicate" in your question, Haines probably wanted to mention that sometimes similar patterns exist over your code, which differ only in their conditional expressions. Conditional expressions do emerge in conjunction with ifs, but the whole idea is to extract a repeating pattern into a separate method, leaving the expression as a parameter. This is what LINQ already does, usually resulting in cleaner code compared to an alternative foreach:
Consider these two very similar methods:
// average male age
public double AverageMaleAge(List<Person> people)
{
double sum = 0.0;
int count = 0;
foreach (var person in people)
{
if (person.Gender == Gender.Male)
{
sum += person.Age;
count++;
}
}
return sum / count; // not checking for zero div. for simplicity
}
// average female age
public double AverageFemaleAge(List<Person> people)
{
double sum = 0.0;
int count = 0;
foreach (var person in people)
{
if (person.Gender == Gender.Female) // <-- only the expression
{ // is different
sum += person.Age;
count++;
}
}
return sum / count;
}
This indicates that you can extract the condition into a predicate, leaving you with a single method for these two cases (and many other future cases):
// average age for all people matched by the predicate
public double AverageAge(List<Person> people, Predicate<Person> match)
{
double sum = 0.0;
int count = 0;
foreach (var person in people)
{
if (match(person)) // <-- the decision to match
{ // is now delegated to callers
sum += person.Age;
count++;
}
}
return sum / count;
}
var males = AverageAge(people, p => p.Gender == Gender.Male);
var females = AverageAge(people, p => p.Gender == Gender.Female);
And since LINQ already has a bunch of handy extension methods like this, you actually don't even need to write your own methods:
// replace everything we've written above with these two lines
var males = list.Where(p => p.Gender == Gender.Male).Average(p => p.Age);
var females = list.Where(p => p.Gender == Gender.Female).Average(p => p.Age);
In this last LINQ version the if statement has "disappeared" completely, although:
to be honest the problem wasn't in the if by itself, but in the entire code pattern (simply because it was duplicated), and
the if still actually exists, but it's written inside the LINQ Where extension method, which has been tested and closed for modification. Having less of your own code is always a good thing: less things to test, less things to go wrong, and the code is simpler to follow, analyze and maintain.
Huge runs of nested if/else statements
When you see a function spanning 1000 lines and having dozens of nested if blocks, there is an enormous chance it can be rewritten to
use a better data structure and organize the input data in a more appropriate manner (e.g. a hashtable, which will map one input value to another in a single call),
use a formula, a loop, or sometimes just an existing function which performs the same logic in 10 lines or less (e.g. this notorious example comes to my mind, but the general idea applies to other cases),
use guard clauses to prevent nesting (guard clauses give more confidence into the state of variables throughout the function, because they get rid of exceptional cases as soon as possible),
at least replace with a switch statement where appropriate.
Refactor when you feel it's a code smell, but don't over-engineer
Having said all this, you should not spend sleepless nights over having a couple of conditionals now and there. While these answers can provide some general rules of thumb, the best way to be able to detect constructs which need refactoring is through experience. Over time, some patterns emerge that result in modifying the same clauses over and over again.
There is another sense in which if can be evil: when it comes instead of polymorphism.
E.g.
if (animal.isFrog()) croak(animal)
else if (animal.isDog()) bark(animal)
else if (animal.isLion()) roar(animal)
instead of
animal.emitSound()
But basically if is a perfectly acceptable tool for what it does. It can be abused and misused of course, but it is nowhere near the status of goto.
A good quote from Code Complete:
Code as if whoever maintains your program is a violent psychopath who
knows where you live.
— Anonymous
IOW, keep it simple. If the readability of your application will be enhanced by using a predicate in a particular area, use it. Otherwise, use the 'if' and move on.
I think it depends on what you're doing to be honest.
If you have a simple if..else statement, why use a predicate?
If you can, use a switch for larger if replacements, and then if the option to use a predicate for large operations (where it makes sense, otherwise your code will be a nightmare to maintain), use it.
This guy seems to have been a bit pedantic for my liking. Replacing all if's with Predicates is just crazy talk.
There is the Anti-If campaign which started earlier in the year. The main premise being that many nested if statements often can often be replaced with polymorphism.
I would be interested to see an example of using the Predicate instead. Is this more along the lines of functional programming?
Just like in the bible verse about money, if statements are not evil -- the LOVE of if statements is evil. A program without if statements is a ridiculous idea, and using them as necessary is essential. But a program that has 100 if-else if blocks in a row (which, sadly, I have seen) is definitely evil.
I have to say that I recently have begun to view if statements as a code smell: especially when you find yourself repeating the same condition several times. But there's something you need to understand about code smells: they don't necessarily mean that the code is bad. They just mean that there's a good chance the code is bad.
For instance, comments are listed as a code smell by Martin Fowler, but I wouldn't take anyone seriously who says "comments are evil; don't use them".
Generally though, I prefer to use polymorphism instead of if statements where possible. That just makes for so much less room for error. I tend to find that a lot of the time, using conditionals leads to a lot of tramp arguments as well (because you have to pass the data needed to form the conditional on to the appropriate method).
if is not evil(I also hold that assigning morality to code-writing practices is asinine...).
Mr. Haines is being silly and should be laughed at.
I'll agree with you; he was wrong. You can go too far with things like that, too clever for your own good.
Code created with predicates instead of ifs would be horrendous to maintain and test.
Predicates come from logical/declarative programming languages, like PROLOG. For certain classes of problems, like constraint solving, they are arguably superior to a lot of drawn out step-by-step if-this-do-that-then-do-this crap. Problems that would be long and complex to solve in imperative languages can be done in just a few lines in PROLOG.
There's also the issue of scalable programming (due to the move towards multicore, the web, etc.). If statements and imperative programming in general tend to be in step-by-step order, and not scaleable. Logical declarations and lambda calculus though, describe how a problem can be solved, and what pieces it can be broken down into. As a result, the interpreter/processor executing that code can efficiently break the code into pieces, and distribute it across multiple CPUs/cores/threads/servers.
Definitely not useful everywhere; I'd hate to try writing a device driver with predicates instead of if statements. But yes, I think the main point is probably sound, and worth at least getting familiar with, if not using all the time.
The only problem with a predicates (in terms of replacing if statements) is that you still need to test them:
function void Test(Predicate<int> pr, int num)
{
if (pr(num))
{ /* do something */ }
else
{ /* do something else */ }
}
You could of course use the terniary operator (?:), but that's just an if statement in disguise...
Perhaps with quantum computing it will be a sensible strategy to not use IF statements but to let each leg of the computation proceed and only have the function 'collapse' at termination to a useful result.
Sometimes it's necessary to take an extreme position to make your point. I'm sure this person uses if -- but every time you use an if, it's worth having a little think about whether a different pattern would make the code clearer.
Preferring polymorphism to if is at the core of this. Rather than:
if(animaltype = bird) {
squawk();
} else if(animaltype = dog) {
bark();
}
... use:
animal.makeSound();
But that supposes that you've got an Animal class/interface -- so really what the if is telling you, is that you need to create that interface.
So in the real world, what sort of ifs do we see that lead us to a polymorphism solution?
if(logging) {
log.write("Did something");
}
That's really irritating to see throughout your code. How about, instead, having two (or more) implementations of Logger?
this.logger = new NullLogger(); // logger.log() does nothing
this.logger = new StdOutLogger(); // logger.log() writes to stdout
That leads us to the Strategy Pattern.
Instead of:
if(user.getCreditRisk() > 50) {
decision = thoroughCreditCheck();
} else if(user.getCreditRisk() > 20) {
decision = mediumCreditCheck();
} else {
decision = cursoryCreditCheck();
}
... you could have ...
decision = getCreditCheckStrategy(user.getCreditRisk()).decide();
Of course getCreditCheckStrategy() might contain an if -- and that might well be appropriate. You've pushed it into a neat place where it belongs.
It probably comes down to a desire to keep code cyclomatic complexity down, and to reduce the number of branch points in a function. If a function is simple to decompose into a number of smaller functions, each of which can be tested, you can reduce the complexity and make code more easily testable.
IMO:
I suspect he was trying to provoke a debate and make people think about the misuse of 'if'. No one would seriously suggest such a fundamental construction of programming syntax was to be completely avoided would they?
Good that in ruby we have unless ;)
But seriously probably if is the next goto, that even if most of the people think it is evil in some cases is simplifying/speeding up the things (and in some cases like low level highly optimized code it's a must).
I think If statements are evil, but If expressions are not. What I mean by an if expression in this case can be something like the C# ternary operator (condition ? trueExpression : falseExpression). This is not evil because it is a pure function (in a mathematical sense). It evaluates to a new value, but it has no effects on anything else. Because of this, it works in a substitution model.
Imperative If statements are evil because they force you to create side-effects when you don't need to. For an If statement to be meaningful, you have to produce different "effects" depending on the condition expression. These effects can be things like IO, graphic rendering or database transactions, which change things outside of the program. Or, it could be assignment statements that mutate the state of the existing variables. It is usually better to minimize these effects and separate them from the actual logic. But, because of the If statements, we can freely add these "conditionally executed effects" everywhere in the code. I think that's bad.
If is not evil! Consider ...
int sum(int a, int b) {
return a + b;
}
Boring, eh? Now with an added if ...
int sum(int a, int b) {
if (a == 0 && b == 0) {
return 0;
}
return a + b;
}
... your code creation productivity (measured in LOC) is doubled.
Also code readability has improved much, for now you can see in the blink of an eye what the result is when both argument are zero. You couldn't do that in the code above, could you?
Moreover you supported the testteam for they now can push their code coverage test tools use up more to the limits.
Furthermore the code now is better prepared for future enhancements. Let's guess, for example, the sum should be zero if one of the arguments is zero (don't laugh and don't blame me, silly customer requirements, you know, and the customer is always right).
Because of the if in the first place only a slight code change is needed.
int sum(int a, int b) {
if (a == 0 || b == 0) {
return 0;
}
return a + b;
}
How much more code change would have been needed if you hadn't invented the if right from the start.
Thankfulness will be yours on all sides.
Conclusion: There's never enough if's.
There you go. To.

Resources